期刊文献+

基于RGB-D数据的SLAM算法

SLAM algorithm research based on RGB-D data
下载PDF
导出
摘要 本文提出了一种基于RGB-D数据的SLAM算法,通过对相机获取的图像进行ORB特征点的提取与匹配,估计相机运动关系,实现点云拼接,最后会得到全局一致的点云地图和轨迹。为了消除误差积累引起的干扰,引入通用图优化库g2o,得到光滑的优化轨迹;在后端回环检测的过程中,引入关键帧选取机制,提高点云地图的生成效率,减少其消耗的存储空间。实验结果表明,本文的研究方法在RGB-D SLAM算法中具有可行性,并且能够满足实时性要求,具备较高的精度。 This paper proposes a SLAM algorithm based on RGB-D data.By extracting and matching the ORB keypoints of the images obtained by the camera,the camera motion relationship is estimated and the point clouds are stitched.Finally,a globally consistent point cloud map and trajectory are obtained.In the process of detection of the backend end loop closure,a key frame selection mechanism is introduced to improve the generation efficiency of the point cloud map to reduce the amount of storage space.The experimental results show that the research method of this paper is feasible in the RGB-D SLAM algorithm,and it can meet the real-time requirements with high accuracy.
作者 颜义鹏 许志强 翟漪璇 韩金鑫 成怡 YAN Yi-peng ;XU Zhi-qiang;ZHAI Yi-xuan;HAN Jin-xin;CHENG Yi(Tianjin polytechnic university,Tianjin 300387,China)
机构地区 天津工业大学
出处 《科技视界》 2018年第14期152-153,共2页 Science & Technology Vision
关键词 RGB-D ORB特征点提取 SLAM 图优化 RGB-D ORB keypoint extraction SLAM Graph optimization
  • 相关文献

参考文献2

二级参考文献27

  • 1Ikeda S, Miura J. 3D indoor environment modeling by a mobile robot with omnidirectional stereo and la- ser range finder[C] // International Conference on In telligent Robots and Systems. Beijing: Institute of E- lectrical and Electronics Engineers Inc, 2006:3435- 3440.
  • 2Klein G. Murray D. Parallel tracking and mapping for small AP, workspaces[C]//2007 6th IEEE and ACM International Symposium on Mixed and Aug- mented Reality. Nara: Inst of Elec and Elec Eng Computer Society, 2007: 225-234.
  • 3Rosten E, Drummond T. Machine learning for high- speed corner detection[C]//9th European Conference on Computer Vision. Graz: Springer Verlag, 2006: 430-443.
  • 4Rosten R, Porter R, Drummond T. Faster and bet- ter: a machine learning approach to corner detection . IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2010, 80(11): 105-119.
  • 5Newcombe R A, Izadi S, Hilliges O, et al. Kinect fusion: real-time dense surface mapping and tracking [C]//10th IEEE/ACM International Symposium on Mixed and Augmented Reality. Basel: IEEE, 2011: 127-136.
  • 6Izadi S, Kim D, Hilliges O, et al. Kinect fusion: re- al-time 3D reconstruction and interaction using a moving depth camera[C]//24th Annual ACM Sym- posium on User Interface Software and Technology. Santa "Barbara: Association for Computing Machiner- y, 2011: 559-568.
  • 7Fischler M A, Bolles R C. Random sample consen- sus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Com- munications of the ACM, 1981, 24(6): 381-395.
  • 8Jan S, Michal J, Tomas P. 3D with Kinect[C]//2011 IEEE International Conference on Computer Vision Workshops. Barcelona: Institute of Electrical and Electronics Engineers Inc, 2011: 1154-1160.
  • 9Calonder M, Lepetit V, Strecha C, et al. BRIEF: binary robust independent elementary features[C]// 11th European Conference on Computer Vision. Heraklion: Springer-Verlag, 2010: 778-792.
  • 10Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm[C]//3rd International Conference on 3-D Digital Imaging and Modeling. Quebec: IEEE Computer Soc, 2001: 145-152.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部