期刊文献+

DBS术前图像与ICBM-152图谱的配准算法

Registration Algorithm of DBS Preoperative Image and ICBM-152 Atlas
下载PDF
导出
摘要 脑深部电刺激(Deep Brain Stimulation,DBS)手术治疗是帕金森病患者重要治疗手段。脑图谱与术前图像之间的配准是实现DBS术前导航和核团识别的一种有效方法。本文对术前图像与ICBM-152图谱的配准问题进行了研究,首先将术前临床图像标准化至图谱的坐标空间,随后使用分段线性配准对图谱进行粗配准,最后利用互信息作为相似性测度,并基于B样条弹性形变模型实现脑图谱与术前数据的非刚性配准。上述方法可以为每个病人计算出个性化的脑图谱,实验结果表明,在原始图像与图谱的互信息测度为0.558的情况下,该方法使二者的互信息提高至1.217。 Deep brain stimulation(DBS)surgical treatment is an important treatment for patients with Parkinson’s disease.One of the effective ways of preoperative navigation and nuclei identification for DBS is to perform registration between brain atlases and preoperative images.In this paper,we initially implemented the registration of preoperative images and ICBM-152 atlas.We firstly normalized the preoperative clinical image to the coordinate space of the atlas,and then used piecewise linear registration to coarsely map the spectrum,at last,non-rigid registration of the brain atlas with preoperative data was achieved using mutual information as a measure of similarity.Thereby a personalized brain atlas could be calculated for each patient,the experimental results showed that the mutual information between the image and the atlas was 0.558 in the initial stage of the experiment,while it increased to 1.217 when the proposed method was employed.
作者 倪杨阳 郑慧芬 曹胜武 罗守华 NI Yangyang;ZHENG Huifen;CAO Shengwu;LUO Shouhua(School of Biological Sciences and Medical Engineering,Southeast University,Nanjing Jiangsu 210096,China;Department of Geriatric Neurology,Nanjing Brain Hospital Affiliated to Nanjing Medical University,Nanjing Jiangsu 210029,China;Department of Neurosurgery,The First Affiliated Hospital with Nanjing Medical University,Nanjing Jiangsu 210029,China)
出处 《中国医疗设备》 2018年第7期44-47,共4页 China Medical Devices
基金 国家重点研发计划(2017YFA0104302) 东南大学苏州纳米技术协同创新中心的支持
关键词 脑图谱 帕金森病 脑深部电刺激手术 配准 brain atlas Parkinson’s disease deep brain stimulation registration
  • 相关文献

参考文献1

二级参考文献12

  • 1Feng Y.,Chen W..Brain MR image segmentation using fuzzy clustering with spatial constraints based on Markov random field theory.In:Proceedings of MIAR 2004 (LNCS 3150),2004,188~ 195.
  • 2Yang F.,Jiang T..Pixon-based image segmentation with Markov random fields.IEEE Transactions on Image Processing,2003,12(12):1552~1559.
  • 3Zhang Y.,Brady M.,Smith S..Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Transactions on Medical Imaging,2001,20(1):45~57.
  • 4Maes F.,Collignon A..Multimodality image registration by maximization of mutual information.IEEE Transactions on Medical Imaging,1997,16(2):187~198.
  • 5Kim J.,Fisher J.W.,Yezzi A.et al..Nonparametric methods for image segmentation using information theory and curve evolution.In:Proceedings of ICIP 2002,New York,2002,797~800.
  • 6Rigau J.,Feixas M.,Sbert M.etal..Medical image segmentation based on mutual information maximization.In:Proceedings of MICCAI 2004,Saint-Malo,France,2004,135~142.
  • 7Kim J.,Fisher J.W.,Cetin M.et al..Incorproating complex statistical information in active contour -based image segmentation.In:Proceedings of ICIP 2003,Bercelona,Spain,2003,655~658.
  • 8Akaike H..A new look at the statistical model identification.IEEE Transactions on Automatic Control,1974,19(6):716~723.
  • 9Kirkpatrick S.,Gelatt C.D.,Vecchi M.P..Optimization by simulated annealing.Science,1983,220:671~680.
  • 10王爱民,沈兰荪.图像分割研究综述[J].测控技术,2000,19(5):1-6. 被引量:115

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部