期刊文献+

一类常微分方程的伯恩斯坦定理Ⅱ

Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ
下载PDF
导出
摘要 本文基于对伪欧氏空间中拉格朗日平均曲率流自相似膨胀解的伯恩斯坦定理研究,不失一般性,即考虑一类二阶常微分方程u″=F(u-1/2tu′),u=u(t)在一定条件下解的形式,若u′(0)=0,且本文对函数F做出限制条件—函数F(u′,u,t)解析,则可得到方程的解必然是二次多项式。同时本文对一类常微分方程的解的经典伯恩斯坦定理首次利用更为简洁直观的方法加以证明,进而完善伪欧氏空间拉格朗日平均曲率流自相似解刚性定理研究。 In this paper,the Bernstein theorem for the self-expansion solution of the Lagrangian mean curvature flow in the pseudo-European space is studied.Without loss of the generality,for a class of second order ordinary differential equations such as u″=F u-1[]2 tu′,u=u(t),and under certain conditions,their solutions are investigated.If u′(0)=0,and the function F is an analytic function,it is shown that the solutions of the equations are quadratic polynomials.At the same time,the classical Bernstein theorem for the solution of a class of equations is proved by using a more concise and intuitionistic method for the first time,and then the study for the self-similarity solution of the pseudo-European space Lagrangian mean curvature is developed.
作者 黄荣里 李长友 汪敏庆 HUANG Rongli;LI Changyou;WANG Minqing(College of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2018年第3期50-55,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11261008) 广西自然科学基金(2016GXNSFCA380010) 广西研究生教育创新计划项目(YCSZ2016043)
关键词 平均曲率流 解析解 自相似解 Cauchy-Kowalevskya定理 mean curvature flow analytic solution self-similar solution Cauchy-Kowalev-skya theorem
  • 相关文献

参考文献1

二级参考文献7

  • 1JOYCE D,LEE Y I,TSUI M P.Self-similar solutions and translating solitons for Lagrangian mean curvature flow[J]. JDiff Geom,2010,84(1) :127-161.
  • 2ANCIAUX H.Construction of Lagrangian self-similar solutions to the mean curvature flow in Cw [J].Geom Dedicata,2006,120(1):37-48. DOI: 10.1007/sl0711-006-9082-z.
  • 3CHAU A,CHEN Jingyi, YUAN Yu. Rigidity of entire self-shrinking solutions to curvature flows[J].J Reine AngewMath,2012,2012(664) :229-239. DOI: 10.1515/CRELLE.2011.102.
  • 4SMOCZYK K. Self-shrinkers of the mean curvature flow in arbitrary codimension[ J J. Int Math Res Not, 2005, 2005(48):2983-3004. DOI: 10.1155/IMRN.2005.2983.
  • 5DING Qi, XIN Yuanlong. The rigidity theorems for Lagrangian self-shrinkers [J]. J Reine Angew Math,2014,2014(692);109-123. D01:10.1515/crell^2012-0081.
  • 6XU Ruiwei,CAO Linfen. Complete self-shrink solutions for lagrangian mean curvature flow in pseudo-euclidean space[J]. Abstract and Applied Analysis,2014,2014 : 196751.DOI: 10.1155/2014/196751.
  • 7HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature fIow[J].CalcVar Partial Differential Equations,2011,41(3/4) *321-339. DOI: 10.1007/s00526-010-0364-9.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部