期刊文献+

基于人体加速度多特征融合和K近邻算法的跌倒检测 被引量:4

Fall Detection Based on Multi-feature Fusion of Human Body Acceleration and K-Nearest Neighbor
下载PDF
导出
摘要 目的探索基于人体加速度的跌倒检测方法。方法 2017年9月至11月,6例健康青年志愿者完成13个跌倒动作和11个日常活动动作。通过两个加速度传感器采集人体动作信息,每个加速度传感器提取81个加速度特征参数。通过主成分分析降维,输入K近邻(KNN)算法分类器对跌倒和日常动作进行识别。结果跌倒检测敏感性100%,特异性99.76%,检测时间216 ms。结论加速度多特征融合和KNN算法可以实现跌倒的及时有效检测。 Objective To develop a kind of algorithm for fall detection based on human acceleration.Methods From September to November,2017,six healthy postgraduates participating in the experiment completed 13 acts of falls and eleven of activities of daily life.The information of activities was collected through two acceleration sensors,81 acceleration features were extracted from each sensor,and were reduced dimension through principal component analysis.K-nearest neighbor was used to detect the falls and activities of daily living.Results The sensitivity of fall detection was 100%,the specificity was 99.76%,and the detection time was 216 ms.Conclusion The algorithm of multi-feature fusion of human body acceleration and K-nearest neighbor is accurate and timely.
作者 华仙 席旭刚 HUA Xian;XI Xu-gang(Jinhua People's Hospital,Jinhua,Zhejiang 321000,China;Intelligent Control&Robotics Institute of Hangzhou Dianzi University,Hangzhou,Zhejiang 310018,China)
出处 《中国康复理论与实践》 CSCD 北大核心 2018年第7期865-868,共4页 Chinese Journal of Rehabilitation Theory and Practice
基金 国家自然科学基金项目(No.61671197) 浙江省基础公益研究计划项目(No.LGF18F010006)~~
关键词 跌倒 检测 人体加速度 动作 特征提取 fall detection human body acceleration acts feature extraction
  • 相关文献

参考文献3

二级参考文献22

  • 1朱月妹,袁浩斌,陈雷.老年人跌倒危险因素的调查[J].护理实践与研究,2007,4(10):5-7. 被引量:23
  • 2郝燕萍,刘雪琴,靳海如.老年人跌倒致伤情况分析[J].护理研究(上旬版),2006,20(8):2017-2018. 被引量:44
  • 3Shigeru Yamauchi.Ageing Society and Assistive Products[J].稀有金属材料与工程,2006,35(A03):67-70. 被引量:1
  • 4Davide Curone, Gian Mario Bertolotti, Andrea Cristiani, et al. A Real-Time and Self-Calibrationg Algorithm Based on Triaxial Ac- celerometer Signals for the Detection of Human Posture and Activity[ J ]. IEEE Transactions on Information Technology in Bio- medicine ,2010,14(4 ) :1098-1105.
  • 5Marble M J. Monitoring and Interpreting Human Movement Patterns Using a Triaxial Accelerometer [ D ] : [ Ph. D. Dissertation ]. The University of New South Wales,2003.
  • 6Dean M Karantonis, Michael R Narayanan, Merryn Marble, et al. Implemecntation of a Real-Time Heman Movement Classifier Using a Triaxial Aceelerometer for Ambulatory Monitoring [ J ]. IEEETransactions on Information Technology in Biomedicine,2006, 10 (1) :156-167.
  • 7Jantaraprim P, Phukpattaranont P, Limsakul C, et al. Improving the Accuracy of a Fall Detection Algorithm Using Free Fall Characteristics[ C]//IEEE International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology. Chiang Mai ,Thailand ,2010:501-504.
  • 8Jeong Do-Un, Kim Se-Jin, Chung Wan-Young. Classification of Posture and Movement Using a 3-axis Accelerometer[ C ]//IEEE International Conference on Convergence Information Technology. Gyeongju, Korea ,2007:837-844.
  • 9Freescale Semiconductor. + 1. 5g, + 6g Three Axis Low-g Micromachined Accelerometer[ Z]. 2008.
  • 10Mathie M J, Coster A C, Celler B G. Classification of Basic Daily Movements Using a Triaxial Accelerometer [ J ]. Medical and Biological Engineering and Computing,2004,42:670-687.

共引文献81

同被引文献52

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部