期刊文献+

基于TSFCW雷达的多目标速度和距离估计算法

Multi-Target Velocity and Distance Estimation Algorithm based on TSFCW Radar
下载PDF
导出
摘要 基于毫米波防撞雷达的多目标检测和估计,对自动驾驶和交通安全有着重要意义。因此,分析现有的基于线性调频连续波(LFMCW)雷达的多目标检测算法的不足,提出了一种基于梯形步进频率连续波(TSFCW)雷达来实现多目标的速度和距离估计的方法。这种方法不仅能快速估计目标的速度和距离值,而且解决了两个目标的中频信号接近时无法正确估计两个目标距离和速度的问题,大大减小了多目标估计中出现虚假目标和漏检的概率。最后,利用仿真实验验证了所提算法的可靠性。 Multi-target detection and estimation based on millimeter-wave anti-collision radar is of great significance for automatic driving and traffic safety.Therefore,the existing shortcomings of multi-target detection algorithm based on LFMCW(Linear Frequency Modulated Continuous Wave)radar are analyzed,and the method based on TSFCW(Trapezoidal Stepped-Frequency Continuous Wave)radar to realize multi-target velocity and distance estimation is proposed.This method can quickly estimate the speed and distance of the target while solving the problem that the distance and velocity of the two targets cannot be correctly estimated when the IF signal is close,this could greatly reduce the probability of false targets and missed detection in multi-objective estimation.Finally,simulation experiments indicate the feasibility and reliability of the proposed algorithm.
作者 张文鑫 高晶敏 杨鸿波 ZHANG Wen-xin;GAO Jing-min;YANG Hong-bo(National Electronic Information and Control Experimental Teaching Center,Beijing Informatica Science&Technology University,Beijing 100192,China)
出处 《通信技术》 2018年第7期1566-1574,共9页 Communications Technology
基金 低速超高速运动平台测高算法研究(No.52218110937) 基于蚁群算法的无线传感器网络容错路由算法研究(No.5221710911)~~
关键词 步进频率连续波(SFCW) 多目标 速度 距离 SFCW multi-target speed range
  • 相关文献

参考文献4

二级参考文献30

  • 1刘艳.FMCW汽车防撞雷达的多目标信号处理方法研究[D].南京:南京理工大学,2004.
  • 2Bar-Shalom Y and Tse E. Tracking and Data Association[M]. New York: Academic Press, 1988: 173-353.
  • 3Aslan M S and Saranl A. Threshold optimization for tracking a nonmaneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 37(2): 2844-2859.
  • 4Aslan M S and Saranl A. Advances in Heuristic Signal Processing and Applications[M]. Berlin Heidelberg: Springer, 2013: 111-143.
  • 5Aslan M S, Saranl A, and Baykal B. Tracker-aware adaptive detection: an efficient closed-form solution for the Neyman- Pearson case[J]. Digital Signal Processing, 2010, 20(5): 1468-1481.
  • 6Willett P, Niu R, and Bar-Shalom Y. Integration of Bayes detection with target tracking[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 17-29.
  • 7Ristic B, Arulampalam S, and Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Boston, MA: Artech House, 2004: 86-102.
  • 8Liggins M E, Hall D L, and Llinas J. Handbook of Multisensor Data Fusion: Theory and Practice[M]. 2nd Ed. Boca Raton, CRC Press, 2009: 204-241.
  • 9Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. 1st Ed. Upper Saddle River, Prentice-Hall, 1993: 295-345.
  • 10Rohling H.Some Radar Ropics:Waveform Design,Range C far and Target Recognition[M].Advances in Sensing with Security Applications.Springer Netherlands,2006:293-322.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部