期刊文献+

大数据技术在短期负荷预测的应用 被引量:6

Application of Big Data Technology in Short Term Load Forecasting
下载PDF
导出
摘要 随着电网的智能化升级其处理数据的能力越来越强,这为电力系统负荷的预测开辟了一条新的道路。将支持向量机技术同大数据技术结合在一起,建立负荷非线性回归方程,然后利用Hadoop处理框架的大数据技术解决方法 ,此类方法结合了支持向量机技术对非线性数据的处理能力和大数据的数据挖掘能力的优点,结果表明该算法同传统的算法相比,有更好的精确性。本文将支持向量机技术同大数据技术结合在一起,建立负荷非线性回归方程,然后利用Hadoop处理框架的大数据技术解决方法 ,此类方法结合了支持向量机技术对非线性数据的处理能力和大数据的数据挖掘能力的优点,结果表明该算法同传统的算法相比,有更好的精确性。 With the intelligent upgrading of the power grid,its ability to process data is becoming more and more powerful,which opens a new way for the load forecasting of the power system.Combining the support vector machine technology with big data technologies to establish load nonlinear regression equation,and then using a large data processing framework Hadoop technology solutions,this method combines the advantages of processing ability of support vector machine technology for nonlinear data and large data mining capabilities,the results show that the algorithm compared with traditional algorithm and have better accuracy.This paper combines the support vector machine technology with big data technologies to establish load nonlinear regression equation,and then using a large data processing framework Hadoop technology solutions,this method combines the advantages of processing ability of support vector machine technology for nonlinear data and large data mining capabilities,the results show that the algorithm compared with the traditional the algorithm has a better accuracy.
作者 陈本阳 CHEN Ben-yang(State Grid Shanxi Electric Company Institute of Economics and Technology,Xi’an 710065 China)
出处 《自动化技术与应用》 2018年第6期21-25,共5页 Techniques of Automation and Applications
关键词 大数据 框架 数据挖掘 负荷预测 支持向量机 big data frame data mining load forecasting support vector machine
  • 相关文献

参考文献9

二级参考文献254

共引文献2719

同被引文献99

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部