期刊文献+

一种基于覆盖表融合的移动群智感知协作算法 被引量:5

A Cooperative Algorithm for Mobile Crowd-sensing Based on Coverage Table Fusion
下载PDF
导出
摘要 在集中性较高的感知区域中,移动群智感知网络节点在无控制的模式下,容易产生感知数据冗余度大幅升高的问题,降低了网络感知质量。针对这种情况,首先对感知区域进行时空域划分,并对感知过程进行建模;然后引入单元格充足感知覆盖概念,设计了一种基于覆盖表信息融合的移动节点协作感知数据收集算法。实验仿真表明,相较于原始感知模式和本地控制模式,该算法能大幅消除感知冗余数据,从而提高感知网络的数据质量,同时节约移动节点代价。 In more concentrated sensing area,the nodes of mobile crowd-sensing network tend to produce a large increase in the redundancy of sensing data in the uncontrolled mode,which reduces the quality of sensing network.In view of this situation,the sensing area is divided into spatial-temporal domain at first in this paper,and the sensing process is modeled.Then the concept of cell sufficient sensing coverage is introduced.Based on this,a cooperative sensing data collection algorithm is proposed for mobile nodes based on coverage table information fusion.Experimental simulation shows that compared with the original sensing mode and local control mode,the proposed algorithm can eliminate sensing redundancy data greatly,thus improving the data quality of the sensing network,and saving the cost of mobile nodes.
作者 潘俊虹 蒋建武 吴薇 PAN Junhong;JIANG Jianwu;WU Wei(School of Mathematics and Computer Science,Wuyi University,Wuyishan 354300,China;Department of Computer Science and Technology,Soochow University,Suzhou 215006,China;Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions, Wuyishan 354300,China)
出处 《电讯技术》 北大核心 2018年第7期745-752,共8页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61672369) 福建省教育厅科研基金项目(JAT160521) 武夷学院科研基金项目(XD201506)
关键词 移动群智感知 信息融合 协作感知 覆盖表 数据收集 mobile crowd-sensing information fusion collaborative sensing coverage table data collection
  • 相关文献

参考文献8

二级参考文献78

  • 1刘云浩.群智感知计算[OL]. [2013-08-10]. http://www.cse. ust. hk/.Iiu/Crowd2012. pdf.
  • 2Burke J A, Estrin D, Hansen M, et al. Participatory sensing[C] //Proceedings of Workshop on World Sensor Web: MobileDevice Centric Sensor Networks and Applications. NewYork: ACM Press, 2006 = 117-134.
  • 3Maisonneuve N,Stevens M, Niessen M E, et al. NoiseTube:measuring and mapping noise pollution with mobile phones[C] //Proceedings of the 4th International ICSC Symposium:Information Technologies in Environmental Engineering.Heidelberg: Springer, 2009 : 215-228.
  • 4Li Z,Zhu Y M,Zhu H Z,et al. Compressive sensingapproach to urban traffic sensing [C] //Proceedings of the 31stIEEE International Conference on Distributed ComputingSystems. Los Alamitos: IEEE Computer Society Press,2011: 889-898.
  • 5D,Hondt E,Stevens M, Jacobs A. Participatory noisemapping works! an evaluation of participatory sensing as analternative to standard techniques for environmentalmonitoring [J]. Pervasive and Mobile Computing, 2013,9(5): 681-694.
  • 6Candes E J, Romberg J, Tao T. Robust uncertaintyprinciples: exact signal reconstruction from highly incompletefrequency information [J]. IEEE Transactions on InformationTheory, 2006, 52(2): 489-509.
  • 7Donoho D L. Compressed sensing [J]. IEEE Transactions onInformation Theory, 2006,52(4): 1289-1306.
  • 8Yu X,Liu Y, Zhu Y, et al. Efficient sampling andcompressive sensing for urban monitoring vehicular sensornetworks [J]. IET Wireless Sensor Systems, 2012,2(3):214-221.
  • 9Rana R K,Chou C T, Kanhere S S, et al. Ear-phone: anend-to-end participatory urban noise mapping system [C] //Proceedings of the 9th ACM/IEEE International Conferenceon Information Processing in Sensor Networks. New York:ACM Press, 2010: 105-116.
  • 10Tropp J A,Gilbert A C. Signal recovery from randommeasurements via orthogonal matching pursuit [J]. IEEETransactions on Information Theory, 2007, 53(12): 4655-4666.

共引文献73

同被引文献65

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部