期刊文献+

基于车辆运行管理的多目标化V2V数据传递优化研究

Research on Vehicle Operation Management target V2V Data Optimization Based on Vehicle tracking
下载PDF
导出
摘要 车辆自组织网络作为提高交通效率和提升交通安全的有效手段受到了广泛关注并被应用于道路设施监控、交通拥塞和交通事故预警、乘客间信息共享等方面。文章分析了车辆自组织网络独有的特征,提出了一种基于车辆轨迹的多目标优化车与车互联(vehicle-to-vehicle,V2V)通讯技术应用模型,利用车辆轨迹信息和道路交通统计的手段来挖掘多目标马尔可夫决策过程的参数,提供两种方法求解多目标马尔可夫决策过程,最终得到交叉路口处数据包传递的最优决策,利用此决策来进行数据的转发,同时还提出了错误恢复过程进行目的交付叉路口预测错误恢复。最后,通过采集3 996辆不同类型车辆的运行数据,验证了方案的有效性。 Vehicular ad-hoc network as an effective approach to enhance traffic efficiency and safety has attracted much attention.Vehicular ad-hoc network is wildly used in road infrastructure monitoring,traffic congestion and accident warning,passenger information sharing between applications.In this research issue,we analyzed the characteristics of vehicular ad-hoc network and the key issues and challenges in its data delivery issue.We analyzed the advantages and disadvantages of these solutions,and proposed a trajectory-based multi-objective optimal V2V data forwarding scheme called TMODF.We provided two methods for solving multi-objective MDP,the optimal routing policy is then developed by solving the multi-objective MDP.Then,the optimal routing policy was used to do data forwarding.We also proposed an error recovery process which was used to do destination intersection prediction error recovery.Finally,through collecting the data of 3 996 different types of vehicles,to verify the effectiveness of the proposed scheme.
作者 尹乾 Yin Qian(College of Engineering,Xi'an International University,Shaanxi Xi'an 710077)
出处 《汽车实用技术》 2018年第13期22-26,共5页 Automobile Applied Technology
基金 西安社科基金规划项目(编号12IN14)
关键词 智能交通 网络管理 多目标优化 数据传递 车辆轨迹 Intelligent transportation Network management Multi-objective optimal Data forwarding Vehicle trajectory
  • 相关文献

参考文献4

二级参考文献30

  • 1黄卫 陈里得.智能运输系统(ITS)概述[M].北京:人民交通出版社,2001..
  • 2HOOGENDOORN S P,VAN ZUYLEN H J,SCHREUDER M,et al.Microscopic traffic datacollection by remote sensing [J ].TransportationResearch Record,2003,1855:121-128.
  • 3KNOOP V L,HOOGENDOORN S P,VAN ZUYLEN HJ.Processing traffic data collected by remote sensing[J].Transportation Research Record,2009,2129:55-61.
  • 4DUCARD G J J.Practical methods for small unmannedaerial vehicles [M].Berlin:Springer?Verlag,2010.
  • 5BRADSKI G,KAEHLER A.Learning OpenCV [M].Sebastopol:O’Reilly Media,2008.
  • 6ZHANG Z Y.A flexible new technique for cameracalibration [J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2000,22(11):1330-1334.
  • 7Barria J A, Thajehayapong S. Detection and classification of traffic anomalies uMng microscopic traffic variables [J]. IEEE Trans on Intelligent Transportation Systems, 2011, 12 (3) : 695-704.
  • 8Saruwatari K, Sakaue F, Sato J. Detection of abnormal driving using multiple view geometry in space-time [C] //Proe of the 4th IEEE Intelligent Vehicles Syrup. Piscataway, NJ.. IEEE, 2012:1102-1107.
  • 9Sang Haifeng, Wang Hui, Wu Danyang. Vehicle abnormal behavior detection system based on video [C] //Proc of the 5th IEEE Int Symp on Computational Intelligence and Design. Piscaraway, NJ: IEEE, 2012:132-135.
  • 10Srivastava S, Ka K N, Delp E J. Co-ordinate mapping and analysis of vehicle trajectory for anomaly detection [C] //Proc of the 12th IEEE Int Conf on Multimedia and Expo. Piscataway, NJ: IEEE, 2011:1-6.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部