期刊文献+

融合子区域局部二值模式特征与深层聚合网络的人脸识别 被引量:2

Face Recognition Based on Fusion of Sub-region Local Binary Pattern Features and Deep Aggregation Network
下载PDF
导出
摘要 针对深度网络对人脸噪声敏感,且学习过程容易忽视人脸结构信息的问题,提出融合子区域局部二值模式(local binary pattern,LBP)特征和深层聚合网络的人脸识别算法。将人脸图像划分为不同子区域,并采用局部二值模式对人脸进行预处理,获取子区域人脸的LBP特征。不同子区域LBP特征输入不同的稀疏自动编码器,实现深层特征提取;然后不同稀疏自动编码器的输出特征通过全连接方式实现特征聚合,获得人脸特征向量用于分类。通过大量实验获取了最优的聚合网络模型架构和网络参数取值,改善了人脸识别效果。 Aiming at the problem that the depth network is sensitive to human face noise and the learning process is easy to ignore the information of face structure,a face recognition algorithm was proposed based on LBP features and deep aggregation network.The face image is divided into different sub-regions,and the local binary image is used to pre-process the face image in order to obtain the LBP features of the sub-region face.LBP features of different sub-regions are input to different sparse auto encoders to achieve deep feature extraction.Then,the output features of different sparse auto encoders are fully aggregated to obtain the feature vectors for classification.Through a large number of experiments,the optimal aggregation network model structure and network parameter values were got,and improved the face recognition effect.
作者 傅桂霞 魏文辉 邹国锋 尹丽菊 高明亮 FU Gui-xia;WEI Wen-hui;ZOU Guo-feng;YIN Li-ju;GAO Ming-liang(College of Electrical and Electronic Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《科学技术与工程》 北大核心 2018年第19期237-243,共7页 Science Technology and Engineering
基金 山东省自然科学基金(ZR2016FL14) 国家自然科学基金(61601266) 中国博士后科学基金(2017M612306) 淄博市校城融合发展计划(2016ZBXC142)资助
关键词 局部二值模式特征 稀疏自动编码器 子区域划分 深层聚合网络 人脸识别 local binary pattern feature sparse auto encoder sub-region division deep aggregation network face recognition
  • 相关文献

参考文献3

二级参考文献28

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2尹洪涛,付平,孟升卫.基于局部特征融合的人脸识别[J].测试技术学报,2006,20(6):539-542. 被引量:5
  • 3BENGIO Y, COURVILLE A, and VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 4COATES A, NG A Y, and LEE H. An analysis of single-layer networks in unsupervised feature learning[C]. Preceedings of the 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, 2011: 215-223.
  • 5KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Preceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012: 1097-1105.
  • 6MASCI J, Meier U, CIREAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Preceedings of the 21st International Conference on Artificial Neural Networks, Espoo, 2011: 52-59.
  • 7LI Z, FAN Y, and LIU W. The effect of whitening transformation on pooling operations in convolutional autoencoders[J]. EURASIP Journal on Advances in Signal Processing, 2015, 2015(1): 1-11.
  • 8VINCENT P, LAROCHELLE H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. The Journal of Machine Learning Research, 2010, 11(Dec): 3371-3408.
  • 9YIN H, JIAO X, CHAI Y, et al. Scene classification based on single-layer SAE and SVM[J]. Expert Systems with Applications, 2015, 42(7): 3368-3380.
  • 10ZHANG F, DU B, and ZHANG L. Saliency-guided unsupervised feature learning for scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.

共引文献87

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部