期刊文献+

基于深度卷积神经网络的街景门牌号识别方法 被引量:2

A Method of Street View Number Recognition Based on Deep Convolution Neural Network
下载PDF
导出
摘要 在复杂图像中提取文本信息是模式识别研究的热点,应用前景广阔。自然场景中的门牌号背景复杂,字符风格多样,识别难度较大。基于卷积神经网络设计一种识别方法,可以达到较好的识别效果。在方法设计中用灰度化手段来弱化自然场景中的背景信息,突出重要特征。基于AlexNet改进网络,加深网络的深度,在激活函数的后面使用批归一化BN,并在全连接层中应用较低比例的Dropout策略。使用谷歌街景门牌号数据集(SVHN),训练约13个小时,识别率达到94.58%。 Extraction of text information from complex images is a hot topic in pattern recognition and has a wide application prospect.In the natural scene,the house number is not only complicated in background design,but also in character style,which is difficult to recognize.Designs a character recognition method of Street View house number based on the convolution neural network,which can achieve better recognition effect.In the design of the method,gray preprocessing method is used to weaken the background information in the natural scene and highlight the important features.Improve network based on AlexNet,deepen network depth and optimize network structure.BN(Batch Normalization)is used after activation function,and a lower scale Dropout policy is applied in the full connection layer.Using Google Street View house number Data Set(SVHN),the training lasts approximately 13 hours and the recognition effect is 94.58 percent.
作者 韩鹏承 胡西川 HAN Peng-cheng;HU Xi-chuan(College of Information Engineering,Shanghai Maritime University,Shanghai 201306)
出处 《现代计算机(中旬刊)》 2018年第7期60-64,共5页 Modern Computer
关键词 卷积神经网络 AlexNet SVHN BN 字符识别 Convoluted Neural Network AlexNet SVHN BN Character Recognition
  • 相关文献

参考文献2

二级参考文献20

  • 1王守觉,曹文明.半导体神经计算机的硬件实现及其在连续语音识别中的应用[J].电子学报,2006,34(2):267-271. 被引量:3
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献963

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部