期刊文献+

层状锰酸锂/碳电化学体系的热稳定性模拟 被引量:1

Thermal stability simulations on layered lithium manganese oxide/carbon electrochemical system
下载PDF
导出
摘要 通过对满电态层状锰酸锂材料、全放电态碳材料及电解液的热性质分析和拟合,建立了层状锰酸锂/碳电化学体系的热模拟模型,并对该体系的热稳定性进行了模拟研究。通过研究该电池从缓慢自放热到热失控的整个过程发现,满电态的层状锰酸锂材料和全放电态碳材料都有两个放热反应过程;负极碳材料在120℃左右的放热峰是造成电池自加热的初始原因,而层状锰酸锂和碳材料300℃左右的放热峰是造成该电池体系热失控的主要原因。该研究对层状锰酸锂/碳电池体系的安全设计与评估提供了理论支持。 The thermal model of layered lithium manganese oxide/carbon electrochemical system was developed,based on the thermal characterized and calculated of full charged layered lithium manganese oxide and full discharged carbon materials.The simulations on thermal stability of lithium manganese oxide/carbon electrochemical system show that:both full charged lithium manganese oxide and full discharged carbon present two exothermic processes;and the first exothermic reaction of carbon material should answer for the initially self-heating of lithium manganese oxide/carbon electrochemical system,while the second reactions of layered lithium manganese oxide and carbon cause the lithium manganese oxide/carbon cell going into thermal runway.
作者 苏晓倩 杨芳凝 刘雪省 SU Xiao-qian;YANG Fang-ning;LIU Xue-sheng(Science and Technology on Power Source Laboratory,Tianjin Institute of Power Sources,Tianjin 300384,China)
出处 《电源技术》 CAS CSCD 北大核心 2018年第7期944-947,共4页 Chinese Journal of Power Sources
关键词 层状锰酸锂 电化学体系 模拟 热稳定性 layered lithium manganese oxide carbon electrochemical system simulation thermal stability
  • 相关文献

参考文献1

二级参考文献10

  • 1DOYLE M,NEWMAN J,GOZDZ A S,et al.Comparison of modeling predictions with experimental data fi'om plastic lithium ion cells[J]. J Electrochem Soc, 1996, 143: 1890-1903.
  • 2ZHANG Q, WHITE R E. Calendar life study of Li-ion pouch cells part 2:simulation [J]. Journal of Power Sources, 2008, 179: 785-792.
  • 3KUMARESAN K, SIKHA G, WHITE R E,Thermal model for a Li-ion cell[J]. J Electrochem Soc, 2008, 155: A 164-A 171.
  • 4ALBERTUS P, NEWMAN J. A simplified model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2008, 183: 376-380.
  • 5WU J, SRINIVASAN V, XU J, et al. Newton-krylov-multigrid algorithms for battery simulation [J]. J Electrochem Soc, 2002, 149: A 1342-A 1348.
  • 6BARNETT B, OFER B, BOOKEUN O H, et al. On the role of the active materials in thermal runaway from internal short circuits [C]//Proceedings of the 14^th international meeting on lithium batteries. Tianjin, China:[s.n.], 2008:75.
  • 7MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J].Journal of Power Sources, 2009, 191: 568-574.
  • 8HATCHARD T D, MACNEIL D D,DAHN J R, et al.Thermal model of cylindrical and prismatic lithium-ion cells[J]. J Elcctrochem Soc, 2001, 148: A 755-A 761.
  • 9KIM G H, PESARAN A,SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. J Power Sources, 2007, 170: 476-489.
  • 10INUI Y, KOBAYASHI Y, WATANABE Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries[J]. Energy Conversion and Management, 2007, 48: 2103-2109.

共引文献19

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部