期刊文献+

粪便镜检图像中红白细胞的分割与识别方法

Methods of segmentation and recognition for red and white cells in stool microscopy images
下载PDF
导出
摘要 针对粪便镜检图像中具有弱边界的红、白细胞的识别问题,研究了基于Chan-Vese模型的兼顾邻域区域边缘和纹理综合信息的分割方法。用八向Sobel弥补透明细胞的模糊边缘,通过细胞域内纹理和边缘信息互补而采用兼顾全局和局部能量分布的Chan-Vese模型的分割方法,并采用具备更好的数据泛化作用的随机决策森林进行分类。实验证明,提出的兼顾边界与域内纹理的改进型Chan-Vese分割方法使粪便镜检图像中红、白细胞的分割精度达到了95.3%。该方法对粪便镜检图像中的有形物体具备更高的分辨能力和光学环境适应性。 In allusion to recognition method for the red and white cells with vague boundary in the stool microscopy images,this paper proposes a new method based on Chan-Vese model,which considers both the edge and texture information of neighboring regions.It proposes a synergetic combination 8 direction Sobel edge enhancement with the tensor field as the region texture attribute in order to remedy the clear cell’s fuzzy boundary and keep the cell’s inherent texture.The complementary edge and texture is more suitable for the Chan-Vese segmentation model considering global and local energy distribution.It also takes the random decision forest with better data generalization effect as a classification tool.The experimental results show that the improved Chan-Vese segmentation method considering both boundary and domain texture makes the segmentation accuracy of red and white cells in the stool microscopy images up to 95.3%.This method has higher recognition precision and strong universality for tangible object in stool microscopy images.
作者 蒋先刚 何晓岭 范自柱 JIANG Xiangang;HE Xiaoling;FAN Zizhu(School of Science,East China Jiaotong University,Nanchang 330013,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第15期203-208,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61262031 No.61263032)
关键词 粪便镜检图像 图像分割 结构张量 CHAN-VESE模型 随机决策森林 stool microscopy images image segmentation structure tensor Chan-Vese model random decision forest
  • 相关文献

参考文献3

二级参考文献34

  • 1李钰,孟祥萍.自适应双阈值Canny算子的图像边缘检测[J].长春工程学院学报(自然科学版),2007,8(3):44-46. 被引量:12
  • 2沈美丽,陈殿仁.支持向量机在尿沉渣有形成分分类中的应用[J].电子器件,2006,29(1):98-101. 被引量:3
  • 3冈萨雷斯.数字图像处理:二版[M].北京:电子工业出版社,2007:463-491.
  • 4冈萨雷斯.数字图像处理:MATLAB版[M].北京:电子工业出版社,2005:289-295.
  • 5MEI Fang, YUE Guang-xue, YU Qing-cang. The Study on An Application of Otsu Method in Canny Operator [C]//ISIP'09, Huangshan, China, August21-23, 2009: 109-112.
  • 6WANG Zhi. Fast Adaptive Threshold for the Canny Edge Detector [J]. Proc. of SPIE(S0277-786X), 2005, 6044: 60441Q1-60441Q8.
  • 7John Canny. A Computational Approach to Edge Detection [J]. IEEE Trans. Pattern Analysis and Machine Intelligence(S0162-8828), 1986, 8(6): 679-698.
  • 8Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on system Man Cybernetics(S1083-4419), 1979, 9(1): 62-66.
  • 9Ping Sung Liao. A Fast Algorithm for Multilevel Thresholding [J]. Journal of Information Science and Engineering (S1016-2364), 2001, 17: 713-727.
  • 10李牧,闫继红,李戈,赵杰.自适应Canny算子边缘检测技术[J].哈尔滨工程大学学报,2007,28(9):1002-1007. 被引量:88

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部