期刊文献+

基于深度卷积神经网络的运动目标光流检测方法 被引量:15

The optical flow detection method of moving target using deep convolution neural network
下载PDF
导出
摘要 运动目标检测是物体检测领域的一个重要研究方向,在目标识别中有着至关重要的作用。针对传统运动检测方法精度不高、无法对运动目标进行检测,本文将深度卷积神经网络引入到运动目标光流检测中,将前后帧图像及目标光流场图像作为网络的输入,自适应地学习运动目标光流,并通过对网络放大架构的优化及网络的精简,同时采用数据增广等技术,设计出精度与实时性兼顾的目标物体光流检测网络。实验结果表明,本文方法在运动目标的光流场检测中有更好的表现,SS-sp和CS-sp网络相比原网络在检测精度上均提高了约5.0%,同时大幅减少了网络的运行时间,基本满足实时检测的要求。 Moving target detection is an important research direction of object detection,and it plays an important role in target recognition.The accuracy of traditional motion detection methods is low,which are unable to only detect the required moving target.In this study,deep convolutional neural network is introduced into the optical flow detection of moving target.In this method,a pair of images and optical flow fields of target are used as inputs of the network to adaptively study the target optical flow.Furthermore,through optimization of the expanding part of the network and the simplification of the network,and combined with many data augmentation technologies,the optical flow detection network of target object with both accuracy and real-time is designed.Experimental results show that the proposed method has better performance in the optical flow detection of moving target.SS-sp and CS-sp network are improved by about 5.0%compared to the original network on the precision and the runtime of the network is significantly reduced,which meet the requirements of real-time detection.
作者 王正来 黄敏 朱启兵 蒋胜 Wang Zhenglai;Huang Min;Zhu Qibing;Jiang Sheng(Key Laboratory of Advanced Process Control for Light Industry,Ministry of Education,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《光电工程》 CAS CSCD 北大核心 2018年第8期38-47,共10页 Opto-Electronic Engineering
基金 江苏省研究生培养创新工程(SJLX16_0498) 江苏省政策引导类计划(产学研合作)-前瞻性联合研究项目(BY2016022-32)~~
关键词 运动目标 光流检测 深度卷积神经网络 网络结构优化 moving target optical flow detection deep convolutional neural network network structure optimization
  • 相关文献

参考文献7

二级参考文献238

  • 1张才.2010年全国火灾情况分析[J].安全,2011(2):46-49. 被引量:12
  • 2Yuan Guo-wu. Research on moving objects detection and tracking methods in intelligent visual surveillance system [ D]. Kunming: Yunnan University ,2012.
  • 3Huang Chao-qun. Motion detection and tracking based on gaussian mixture model and kalman filter [ D ]. Kunming : Yunnan Universi- ty, 2010.
  • 4Harris C, Stephens M. A combined comer and edge detector [ C ]. Proceedings of the 4th Alvey Vision Conference, August 31-Sep- tember 2,1988:147-151.
  • 5Shi Jian-bo,Carlo tomasi. Good features to track[ C ]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition ( CVPR94), 1994:593-600.
  • 6Lucas B D, Kanade T. An iterative image registration technique with an application in stereo vision E C 1- Proceeding of 7th Interna- tional Joint Conference on Artificial Intelligence, 1981:674-679.
  • 7Gary Bradski, Adrian Kaehler. Learning OpenCV-computer vision with the OpenCV library[ EB/OL]. Free online edition, http ://sa- fail. oreilly, corn ,2011.
  • 8I Computer vision and robotics research laboratory test bed data[ EB/ OL ]. http ://cvrr. ucsd. edu/aton/shadow/, 2011.
  • 9Performance evaluation of tracking and surveillance ( PETS2000 ) [ EB/OL ]. http ://ftp. pets. rdg. ac. uk/pub/PETS2000/,2011.
  • 10The second IEEE international workshop on performance evaluation of tracking and surveillance( PETS2001 ) [- EB/OL ]. http ://www. cvg. cs. rdg. ac. uk/PETS2001/,2011.

共引文献882

同被引文献93

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部