期刊文献+

基于改进MTI算法的视频图像空间目标检测 被引量:5

Space objects detection in video satellite images using improved MTI algorithm
下载PDF
导出
摘要 针对经典MTI算法在处理某型微纳卫星拍摄的视频图像时存在较为耗时的现象,以及空间目标轨迹投影不连续造成无法使用连通域标记同一目标的问题,本文提出一种改进的MTI算法用于空间目标检测。算法通过设计像素"感受域",消除了空间目标轨迹投影不连续的现象。同时,在简化了像素时序信号投影的步骤后,仍能保留原算法对背景杂光和噪声的滤除作用,并使得算法速度得到提升。基于某型微纳卫星拍摄的视频图像进行算法实验,结果表明,本文算法对于轨迹投影不连续空间目标的检测无虚警,算法速度约为0.06 s/f。 An improved MTI algorithm is proposed in this paper to solve the problem of space objects detection in video satellite images.In order to detect the inconsecutive target’s trajectory,at the beginning of the algorithm we set a special preprocessing which is called pixel’s feeling domain.To reduce the time of the algorithm,we simplified the time projection part of the classic MTI algorithm,which is used to restrain the background.Finally,targets trajectories are obtained through connected domain detection.The experimental results show that,the improved MTI algorithm can effectively eliminate the background and is suitable for the inconsecutive target’s trajectory detection.In addition,the algorithm’s processing speed almost meets the real-time task.
作者 罗振杰 曾国强 Luo Zhenjie;Zeng Guoqiang(Micro&Nano Satellite Engineering Center,National University of Defense Technology,Changsha,Hunan 410073,China;School of Remote Sensing and Information Engineering,Wuhan University,Wuhan,Hubei 430079,China)
出处 《光电工程》 CAS CSCD 北大核心 2018年第8期58-64,共7页 Opto-Electronic Engineering
关键词 空间目标检测 MTI算法 像素“感受域” 像素时序信号投影 space objects detection MTI algorithm pixel’s feeling domain time projection
  • 相关文献

参考文献3

二级参考文献27

  • 1张春华,陈标,周晓东.运动背景星空图像中小目标的运动轨迹提取算法[J].光学精密工程,2008,16(3):524-530. 被引量:18
  • 2王卫华,何艳,陈曾平.光电图像序列运动弱目标实时检测算法[J].光电工程,2006,33(4):14-18. 被引量:23
  • 3王兆魁,张育林.一种CCD星图星点快速定位算法[J].空间科学学报,2006,26(3):209-214. 被引量:29
  • 4Li Z Z,Li R X, Wei H G. Research of Image denoising based on high precision of star sensors [ C ]. 6th Interna- tional Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Smart Structures, Xiamen,2012 : 1 - 6.
  • 5Chu P L. Efficient detection of small moving objects[ R]. Lexington, Massachusetts Institute of Technology, Lincoln Laboratory, 1992 : 1 - 70.
  • 6Carbone C P, Kay S M. A novel normalization algorithm based on the three-dimensional minimum variance spectral estimation[ J ]. IEEE Transactions on Aerospace and Elec- tronic System,2012,48 ( 1 ) :430 - 448.
  • 7Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) :91 - 110.
  • 8Bay H,Ess A,Tuytelaars T, et al. Speeded-up robust fea- tures(SURF) [ J ]. Computer Vision and Image Under- standing,2008,110 ( 3 ) :346 - 359.
  • 9Sun T,Xing F, You Z. Optical system error analysis and calibration method of high-accuracy star trackers [ J ]. Sen- sors,2013,13 (4) :4598 - 4623.
  • 10张春华,周晓东,陈维真.基于背景抑制的星空图像目标运动轨迹提取[J].红外与激光工程,2008,37(1):143-146. 被引量:20

共引文献11

同被引文献32

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部