摘要
本文将"医学系统命名法-临床术语"(SNOMED CT)的核心体系引入到医疗健康大数据的分析过程中,并提出SNOMED CT体系下的医疗健康大数据映射和迁移方法。该方法能够为医疗健康大数据进行分析挖掘工作提供流程、模型和算法的指导。首先,本文对医疗健康大数据类型与SNOMED CT体系进行关联分析。进而,在SNOMED CT体系下,提出了映射和迁移方法的四个阶段:评估映射需求、构建映射模型、模型验证以及审查和维护。最后,通过实际的映射案例验证了该方法的可行性。本文提出的医疗大数据映射与迁移方法,融合了SNOMED CT医学概念集和语义关系集,能够更加充分地实现对既有数据的深度挖掘,对促进医疗信息化的发展有重要的意义。
This paper reports the application of the core system of Systematized Nomenclature of Medicine-Clinical Terms(SNOMED CT)to the analyzing process of medical and health big data,and proposes a mapping and migration approach through SNOMED CT.The system provides reference of relevant processes,models,and algorithms to analyze medical and health big data effectively.First,the implicit relationships between the data and SNOMED CT are analyzed.Then,through the use of the SNOMED CT,four stages in our method are illustrated;evaluating the mapping requirement,establishing the mapping model,verifying the model,and maintaining the model.Finally,we use a real mapping case of big data to demonstrate the feasibility of the proposed method.By examining the complex medical concepts and their semantic relationship set in SNOMED CT,our proposed method promotes deeper mining of knowledge from existing medical and health big data,which holds great significance for the development of medical informatics.
作者
陈东华
张润彤
付磊
尚小溥
朱晓敏
Chen Donghua;Zhang Runtong;Fu Lei;Shang Xiaopu;Zhu Xiaomin(School of Economics and Management,Beijing Jiaotong University,Beijing 100044;Core Laboratory of Translational Medicine,Chinese PLA General Hospital,Beijing 100853;School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044)
出处
《情报学报》
CSSCI
CSCD
北大核心
2018年第5期524-532,共9页
Journal of the China Society for Scientific and Technical Information
基金
国家自然基金重点项目"大数据驱动的智慧医疗健康管理创新"(71532002)
国家自然科学基金青年基金"面向临床决策辅助的电子病历文本结构化方法与知识挖掘研究"(61702023)
教育部基本科研业务费北京交通大学人文社会科学专项基金(2016JBZD01)
教育部人文社科基金"基于电子病历文本的临床知识挖掘研究"(17YJC870015)