期刊文献+

金属深共融溶剂的物化性质研究

Physical Properties of Metal Deep Eutectic Solvents
下载PDF
导出
摘要 合成了四种成分不同的新型三组分金属深共融溶剂:四丁基氯化铵:聚乙二醇-400:三氯化铁(TBAC:PEG:Fe Cl3)、四丁基氯化铵:聚乙二醇-400:氯化锌(TBAC:PEG:Zn Cl2)、四丁基氯化铵:聚乙二醇-400:氯化镍(TBAC:PEG:Ni Cl2)、四丁基氯化铵:聚乙二醇-400:氯化铜(TBAC:PEG:Cu Cl2)。四丁基氯化铵、聚乙二醇-400和金属盐的摩尔比为4:1:0.05。在293.15 338.15 K温度范围内,以5K为一间隔,测量了深共融溶剂的密度、电导率、动力粘度及折光率,结果表明温度对其物理性质影响很大。通过经验方程得到了深共融溶剂的热膨胀系数、分子体积、标准摩尔熵及晶格能等热力学性质参数。从电导率和密度计算出了深共融溶剂的摩尔电导率。利用Vogel-Fulcher-Tamman(VFT)和Arrhenius方程,将测量的动力粘度和电导率对温度进行拟合,得到了动力粘度和电导率随温度变化的方程。通过Walden规则,建立了粘度与摩尔电导率之间的联系。此研究对金属深共融溶剂的应用具有重要的指导意义。 Four metal deep eutectic solvents(MDESs),namely TBAC:PEG:FeCl3、TBAC:PEG:ZnCl2、TBAC:PEG:NiCl2、TBAC:PEG:CuCl2 were synthesized in which the molar ratio of TBAC,PEG and metal salt was 4:1:0.05.The density,electrical conductivity,dynamic viscosity and refractive index of the four MDESs were measured within temperature range from 293.15 K to 338.15 K at an interval of 5 K.The results showed that the temperature had a great influence on the physical properties of MDESs.The thermal expansion coefficient,molecular volume,standard molar entropy and lattice energy were calculated by empirical equation.The molar conductivity was determined from the data of density and conductivity.The temperature dependence of electrical conductivities and dynamic viscosities for the DESs were fitted by Vogel–Fulcher–Tamman(VFT)and Arrhenius equation.The relationship of the molar conductivity and viscosity was established by the Walden rule.The present study will provide a guide for further applications of MDESs.
作者 崔颖娜 马倩倩 CUI Ying-na;MA Qian-qian(College of Environment and Chemical Engineering,Dalian University,Dalian 116622,China)
出处 《大连大学学报》 2018年第3期27-33,共7页 Journal of Dalian University
基金 大连市杰出青年科技人才项目(2016RJ11) 大连市青年科技之星项目(2016RQ079)
关键词 金属深共融溶剂 密度 电导率 动力粘度 metal deep eutectic solvents density electrical conductivity dynamic viscosity
  • 相关文献

参考文献1

二级参考文献94

  • 1Reinhardt D, Ilgen F, Kralisch D, K?nig B, Kreisel G. Green Chem.,2008,10:1170.
  • 2Jessop P G. Green Chem.,2011,13:1391.
  • 3Moity L, Durand M, Benazzouz A, Pierlot C, Molinier V, Aubry J M. Green Chem.,2012,14:1132.
  • 4Ranu B C, Banerjee S, Jana R. Tetrahedron,2007,63:776.
  • 5Kumar A, Pawar S S. J. Org. Chem.,2007,72:8111.
  • 6Zhu A L, Jiang T, Wang D, Han B X, Liu L, Huang J, Zhang J C, Sun D H. Green Chem.,2005,7:514.
  • 7Xin X, Guo X, Duan H F, Lin Y J, Sun H. Catalysis Communications,2007,8:115.
  • 8Kim Y J, Varma R S. J. Org. Chem.,2005,70:7882.
  • 9Law M C, Cheung T W, Wong K Y, Chan T K. J. Org. Chem.,2007,72:923.
  • 10Katsoura M H, Polydera A C, Katapodis P, Kolisis F N, Stamatis H. Process Biochemistry,2007,42:1326.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部