摘要
基于MPI将ML-kNN算法并行化,以解决多标签学习领域中的大规模分类问题,控制计算的时间开销,这也是首次将MPI应用到多标签学习领域.通过与传统的串行ML-kNN的对比实验,验证了所提方法的可行性和有效性.另外,允许数据集以特征为单位划分,这使得该方法在处理高维数据时具有更大的优势.
The ML-k NN algorithm was parallelized by MPI(message passing interface).It aimed to illustrate the classification problem of large-scale data and control the computation of overhead time.It was also the first time to apply MPI into multi-label learning area.According to traditional contrast experiments about serial ML-k NN,it verified the feasibility and effectiveness of the algorithm which was provided.It was worthy mentioned that there were some methods which could make the partition of data set due to feature-based unit.It might help people to get more tremendous advantage when dealing with high dimensional data.
作者
王进
晏世凯
高延雨
金理雄
胡明星
邓欣
陈乔松
WANG Jin;YAN Shikai;GAO Yanyu;JIN Lixiong;HU Mingxing;DENG Xin;CHEN Qiaosong(Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;.China Comservice Wenzhou Construction Co.,Ltd, Wenzhou 325000,China;Yunnan Science Research Institute of Communication&Transportation, Kunming 650011,China)
出处
《郑州大学学报(理学版)》
CAS
北大核心
2018年第3期34-38,共5页
Journal of Zhengzhou University:Natural Science Edition
基金
重庆市基础与前沿研究计划项目(cstc2014jcyj A40001
cstc2014jcyj A40022)
重庆教委科学技术研究项目(自然科学类)(KJ1400436)