期刊文献+

基于Hadoop云平台的新浪微博社交网络关键节点挖掘算法 被引量:4

Key nodes mining algorithm in Sina Weibo social network based on Hadoop cloud platform
下载PDF
导出
摘要 为了高效地分析挖掘新浪微博社交网络信息传播过程中的关键节点,以Hadoop云计算系统作为存储和处理平台,在X-RIME大规模社会网络分析工具开源框架基础上,针对社交网络中使用HITS(hypertext induced topic selection)链接分析算法挖掘关键节点时,未能体现节点和连接的社会属性问题进行改进.新算法充分考虑了社交网络节点和边的社会属性,对HITS算法节点和边的社会属性权值进行优化计算,提出适合社交网络特点的加权HITS算法.通过Hadoop云平台分别运行加权HITS算法和传统HITS算法对新浪微博社交网络数据进行分析.实验结果表明,加权HITS算法比传统HITS算法具有更高的执行效率和结果区分度,加权HITS算法更适合于大规模社交网络信息传播过程中关键节点的分析挖掘. To efficiently analyze and mine the key nodes in the information dissemination process of Sina Weibo social networks,the Hadoop cloud computing system is used as the storage and process platform,based on the X-RIME massive social network analysis open source framework,the traditional hyperlink analysis algorithm HITS(hypertext induced topic selection)is improved by exploring the social attributes of nodes and edges.Based on the social attribute characteristics of the nodes and edges in social networks,the social attribute weight values of nodes and edges are computed and optimized in the new weighted HITS algorithm.The weighted HITS algorithm and the traditional HITS algorithm were implemented to analyze the Sina Weibo dataset in the Hadoop cloud platform.Experimental results show that the weighted HITS algorithm provides higher efficiency and better discrimination than the traditional HITS algorithm,and the weighted HITS algorithm is more suitable for analyzing and mining the key nodes of the information dissemination process in large-scale social networks.
作者 陈红松 王钢 张鹏 Chen Hongsong;Wang Gang;Zhang Peng(School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China;Beijing Key Laboratory of Knowledge Engineering for Materials Science,Beijing 100083,China;Railway Police College,Zhengzhou 450053,China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第4期590-595,共6页 Journal of Southeast University:Natural Science Edition
基金 中央高校基本科研业务费专项资金资助项目(FRF-GF-17-B27) 国家重点基础研究发展计划(973计划)资助项目(2013CB329605) 公安部重大研究资助项目(201202ZDYJ017)
关键词 社交网络 新浪微博 云平台 关键节点 挖掘算法 social network Sina Weibo cloud platform key nodes mining algorithm
  • 相关文献

参考文献2

二级参考文献12

  • 1LANEY D. 3D Data Management:Controlling Data Volume,Velocity,and Variety [J]. Application Delivery Strategies, 2001 ,( 6 ): 70-72.
  • 2QuerylO. Hadoop-based SQL & Big Data Analytics Solution[EB/OL]. http://queryio.com,2015-06-12.
  • 3IBM.智慧的城市:理解IBM智慧城市的基础[EB/OL].http://www-31.ibm.com/province/cn/smartercity.2015-06-13.
  • 4Howe D,Costanzo M,Fey P,et al.Big Data:The Furture of Biocuration[J].Nature,2008,455 ( 7209 ) : 47-50.
  • 5R.eichman O,Jones M,Schildhauer M.Challenges and Opportunities of Open Data in Ecology[J].science,2011,331 (6018):703-705.
  • 6Hongsong Chen, Bharat Bhargava, Fu Zhongchuan.Multilabels- Based Scalable Access Control for Big Data Applications[J]. IEEE Cloud Computing,2014,1 (3):65-71.
  • 7丁波涛.智慧城市视野下的新型信息安全体系建构[J].上海城市管理,2012,21(4):17-20. 被引量:16
  • 8海宁.伦敦 书写未来智慧城市范本[J].上海信息化,2012(8):81-83. 被引量:1
  • 9张璐,李晓勇,马威,吕从东.政府大数据安全保护模型研究[J].信息网络安全,2014(5):63-67. 被引量:17
  • 10李德仁,姚远,邵振峰.智慧城市中的大数据[J].武汉大学学报(信息科学版),2014,39(6):631-640. 被引量:412

共引文献36

同被引文献60

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部