摘要
预测模型参数的选取对其泛化能力和预测准确度,起着至关重要作用。基于径向基核函数的最小二乘支持向量机参数主要涉及惩罚因子和核函数参数,这两个参数的选择将直接影响最小二乘支持向量机的学习和泛化能力。为了提高最小二乘支持向量机的预测结果,文章用灰狼优化算法对其参数寻优,建立软件老化预测模型。通过实验证明了该模型,对软件老化的预测表现出很好的效果。
The selection of predictive model parameters plays a crucial role in its generalization ability and prediction accuracy.Least squares support vector machine parameters based on radial basis kernel functions mainly involve penalty factors and kernel function parameters.The choice of these two parameters will directly affect the learning and generalization ability of least squares support vector machines.In order to improve the prediction results of the least squares support vector machine,the paper uses the gray wolf optimization algorithm to optimize its parameters,and builds a software aging prediction model.The experiment proves that this model has a good effect on the prediction of software aging.
作者
陈珂
何箐
Chen Ke;He Qing(School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)
出处
《无线互联科技》
2018年第15期117-119,共3页
Wireless Internet Technology
基金
陕西省教育厅基金项目
项目名称:多核环境下的软件抗衰技术研究
项目编号2013JK1189
西安建筑科技大学青年科技基金
项目名称:云计算环境下核心服务软件老化预测与抗衰研究
项目编号:QN1323
关键词
软件老化预测
最小二乘支持向量机
灰狼优化算法
software aging prediction
least squares support vector machine
grey wolf optimization algorithm