期刊文献+

基于灰狼优化算法的最小二乘支持向量机在软件老化预测中的应用 被引量:1

Application of least squares support vector machine based on grey wolf optimization algorithm in software aging prediction
下载PDF
导出
摘要 预测模型参数的选取对其泛化能力和预测准确度,起着至关重要作用。基于径向基核函数的最小二乘支持向量机参数主要涉及惩罚因子和核函数参数,这两个参数的选择将直接影响最小二乘支持向量机的学习和泛化能力。为了提高最小二乘支持向量机的预测结果,文章用灰狼优化算法对其参数寻优,建立软件老化预测模型。通过实验证明了该模型,对软件老化的预测表现出很好的效果。 The selection of predictive model parameters plays a crucial role in its generalization ability and prediction accuracy.Least squares support vector machine parameters based on radial basis kernel functions mainly involve penalty factors and kernel function parameters.The choice of these two parameters will directly affect the learning and generalization ability of least squares support vector machines.In order to improve the prediction results of the least squares support vector machine,the paper uses the gray wolf optimization algorithm to optimize its parameters,and builds a software aging prediction model.The experiment proves that this model has a good effect on the prediction of software aging.
作者 陈珂 何箐 Chen Ke;He Qing(School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)
出处 《无线互联科技》 2018年第15期117-119,共3页 Wireless Internet Technology
基金 陕西省教育厅基金项目 项目名称:多核环境下的软件抗衰技术研究 项目编号2013JK1189 西安建筑科技大学青年科技基金 项目名称:云计算环境下核心服务软件老化预测与抗衰研究 项目编号:QN1323
关键词 软件老化预测 最小二乘支持向量机 灰狼优化算法 software aging prediction least squares support vector machine grey wolf optimization algorithm
  • 相关文献

参考文献2

二级参考文献33

  • 1WallK 张辉.GUN/Linux编程指南--入门、应用、精通[M].北京:清华大学出版社,2002..
  • 2Stevens WR 施振川.UNIX网络编程. 第一卷:套接口,API和X/OPEN传输接口,API. 第2版[M].北京:清华大学出版社,2001..
  • 3Paulson L D. Computer system, heal thyself [J]. IEEE Computer, 2002, 35(8): 20-22.
  • 4Papazoglou P M, Karras D A, Papademetriou R C. Improved integral channel allocation algorithms in cellular communication systems enabling multimedia QoS services [J]. WSEAS Trans on Communications, 2008, 7(10): 1014-1023.
  • 5Rubino G, Varela M, Bonnin J M. Controlling multimedia QoS in the future home network using the PSQA metric [J]. The Computer Journal, 2006, 49(2) : 137-155.
  • 6Huang Y, Kintala C, Kolettis N, et al. Software rejuvenation: Analysis, module and applications [C] //Proc of the 25th Int Syrup on Fault Tolerant Computing. Los Alamitos, CA: IEEE Computer Society, 1995:381-390.
  • 7Marshall E. Fatal error: How Pariot overlooked a scud[J]. Science, 199Z, 255(5050): 1347-1347.
  • 8Garg S, et al. A methodology for detection and estimation of software aging [C]//Proc of 9th Int Symp on Software Reliability Engineering. Los Alamitos, CA: IEEE Computer Society, 1998:283-292.
  • 9Cotroneo D, Orlando S, Russo S. Characterizing aging phenomena of the java virtual machine [C] //Proe of IEEE SRDS'09. Los Alamitos, CA: IEEE Computer Society, 2007:127-136.
  • 10Grottke M, Li Lei, Vaidyanathan K, et al. Analysis of software aging in a Web server [J]. IEEE Trans on Reliability, 2006, 55(3): 411-420.

共引文献7

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部