期刊文献+

基于神经网络结构化组合的下行链路SINR预测 被引量:1

Downlink SINR Prediction Based on Structural Combination of Neural Networks
下载PDF
导出
摘要 针对无线蜂窝系统下行链路信道SINR预测方法存在的只能对单一信道参数场景进行一步预测、预测误差较大等不足,根据信道参数变化场景下SINR序列相关性的变化,对长短期记忆网络(LSTM)和前馈神经网络(FNN)进行结构化组合,提出一种基于LSTM-FNN预测模型的SINR预测方法,并通过预训练-全局训练策略和迭代调优策略对组合网络进行较好地训练。仿真实验表明,LSTM-FNN模型相比于传统的自回归积分滑动平均模型(ARIMA)和单一FNN、LSTM网络,在信道参数变化场景下具有更好的SINR预测性能,且时间复杂度的增加在可接受范围内。 The Signal Interference Noise Rate(SINR)prediction is an effective means to mitigate the effects of channel feedback delay on the performance of wireless cellular system.However,there are some drawbacks in the existing SINR prediction methods,such as only making one-step prediction for the fixed channel parameter case,larger predictive error and so on.Aiming at overcoming these drawbacks,according to the change of SINR series correlation in different channel parameter case,a prediction method based on LSTM-FNN model is proposed.The LSTM-FNN model is constructed by combining Long Short-Term Memory network(LSTM)and Feedforward Neural Network(FNN).In the process of network training,a pre-training and a global training strategy with an iterative fine adjustment are used,which can better train the combined network.The simulation experiments show that the LSTM-FNN model outperforms the traditional ARIMA model,single FNN and LSTM network in the scenarios of the varying channel parameters,and the increase of time complexity is also within the acceptable range.
作者 刘松林 秦晓卫 戴旭初 Liu Songlin;Qin Xiaowei;Dai Xuchu(Department of Electrical Engineering and Information Science,University of Science and Technology of China,Hefei 230027,China)
出处 《遥测遥控》 2018年第4期21-28,59,共9页 Journal of Telemetry,Tracking and Command
基金 国家自然科学基金支持(61471334)
关键词 信道质量反馈延时 SINR预测 长短期记忆网络 前馈神经网络 Channel quality feedback delay SINR prediction Long Short-Term Memory network Feedforward Neural Network
  • 相关文献

参考文献2

二级参考文献22

  • 1P Grassberger, I Procaccia. Measuring the strangeness of strange attractor [J]. Physica D, 1983,9:189 - 208.
  • 2B B Mandelbrot. A fast fractional gaussian noise generator [ J ]. Water Resources Research, 1971,7:543 - 553.
  • 3M Eecours, I Y Chouinard, G Y Delisle, J Roy. Statistical modeling of the received signal envelope in a mobile radio channel [J]. IEEE Trans Vehicular Technology, 1988,37(4) :204 - 212.
  • 4J B Andersen, T S Rappaport, S Yoshida. Propagation measurements and models for wireless communications channels [ J ]. IEEE Communications Magazine, 1995,33 ( 1 ) : 42 - 49.
  • 5S Haykin,X B Li.Detection of signals in chaos[J].IEEE Proceedings,1995,83(1):95—122.
  • 6T Lo,H Leung,J Litva,S Haykin.Fractal characterization of sea-scattered signals and detection of sea-surface targets[J].IEE Proceedings-F,1993,140(4):243—250.
  • 7D L Jaggard,X Sun.Scattering from fractally corrugated surfaces[J].Optical Society of America Journal(A):Optics and Image Sciences,1990,7(6):1131—1139.
  • 8F Takens. Detecting strange attractor in turbulence [J]. Lecture Notes in Mathematics, 1981,898:366 - 381.
  • 9AYOUB H, ASSAAD M. Scheduling in OFDMA system with outdat- ed channel knowledge [ C ] //IEEE International Conference on Communications. 2010 : 1 - 5.
  • 10ASSAAD M. Reduction of the feedback delay impact on the perform- ance of scheluling in OFDMA systems[ C]//70th IEEE Vehicular Technology Conference ( VTC' 09). 2009 : 1 - 4.

共引文献6

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部