期刊文献+

基于改进WNN分析功率曲线的S700K转辙机故障诊断 被引量:22

Fault diagnosis of S700K switch machine based on improved WNN analyses power curve
下载PDF
导出
摘要 基于S700K转辙机常见故障下的功率曲线提出一种将小波变换、改进型遗传算法与神经网络相结合的故障诊断方法。用相应故障模式下的功率信号进行正交小波分解,把结果作为神经网络的输入特征向量,利用改进的遗传算法优化BP神经网络的参数,用训练好的BP神经网络进行故障诊断。研究结果表明:该方法可以有效的运用到S700K转辙机的故障诊断中,并提高转辙机故障诊断的精度与速度。 In this paper,based on the power curve under the common fault of S700K switch machine,a fault diagnosis method based on wavelet transform,improved genetic algorithm and neural network was proposed.Orthogonal wavelet decomposition was carried out by using the power signal in the corresponding fault mode.The result was taken as the input eigenvector of the neural network,and then the improved genetic algorithm was used to optimize the parameters of the BP neural network.Finally,the trained BP neural network was used for fault diagnosis.The results show that the method can be effectively applied to the fault diagnosis of S700K switch machine and improve the accuracy and speed of fault diagnosis of switch machine.
作者 张钉 李国宁 ZHANG Ding;LI Guoning(College of Automation&Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2018年第8期2123-2130,共8页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(61164010)
关键词 S700K转辙机 功率曲线 小波变换 神经网络 故障诊断 S700K switch machine power curve wavelet transform neural network fault diagnosis
  • 相关文献

参考文献7

二级参考文献48

  • 1CHEN Chang zheng, LI Qing, SONG Hong ying Diagnosis and Control Center, Shenyang University of Technology, Shenyang 110023, P.R.China.Wear Fault Diagnosis of Machinery Based on Neural Networks and Gray Relationships[J].International Journal of Plant Engineering and Management,2001,6(3):164-169. 被引量:5
  • 2刘湘国.提速道岔转换设备存在的问题及其解决措施[J].大众科技,2006,8(2):126-127. 被引量:4
  • 3李若琼,李欣,董海鹰.基于证据理论的多信息融合故障诊断研究[J].自动化仪表,2006,27(12):1-4. 被引量:12
  • 4Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 5Suykens J A K,Lukas L,Vandewalle J.Sparse least squares support vector machine classifiers[C]∥European Symposium on Artificial Neural Networks,Belgium:Bruges,April 2000:37-42.
  • 6Li Haisheng,Zhu Xuefeng,Shi Buhai.Nonlinear identification dased on least squares support vector machine[C]∥2004 8th International conference on Control,Automation,Robotics and Vision,China,December 2004:2331-2335.
  • 7Yang Hong,Lou Fei,Xu Yuge,et al.GA based LS-SVM classifier for waste water treatment process[C]∥2008 27th China Control Conference,China,July 2008:436-439.
  • 8Byung-hwa Lee,Sang-un Kim,Jin-wook Seok,et al.Nonlinear system identification based on support vector machine using particle swarm optimization[C]∥SICE-ICASE International Joint Conference,Korea,Oct.2006:5614-5618.
  • 9Chen Yongqi,Zhou Zhanxin,Chen Qijun.The research and application of LS-SVM based on particle swarm optimization[C]∥Proceedings of the IEEE International Conference on Automation and Logistics,China,August 2007:1115-1120.
  • 10师海风.基于神经网络的北溪南巷船闸故障诊断专家系统研究[D].福州:福州大学,2004.

共引文献114

同被引文献114

引证文献22

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部