期刊文献+

基于Deep Learning算法的漏洞扫描技术研究 被引量:1

On Vulnerability Scanning Technology Based on Deep Learning Algorithm
下载PDF
导出
摘要 随着计算机软硬件技术的不断发展,大大推动深度学习技术的进一步发展。深度学习算法是一种基于神经网络技术,用于支持向量机技术的统计算法的代表方法,是计算机自发明以来的一次伟大的发展进步。当前,随着硬件的推动,深度学习算法能够实现更多的功能,借助于深度学习算法来探究其在漏洞扫描中的应用,对于推动计算机网络安全的发展有着极其重要的意义。 The continuous development of computer hardware and software technology greatly promotes the further development of deep learning technology.Deep learning algorithm is a representative method of statistical algorithm for support vector machine based on neural network technology.The algorithm is viewed the great development and progress of computer since its invention.At present,driven by the hardware,deep learning algorithm can perform more features.This paper explores the application of deep learning algorithm in vulnerability scanning,which has very important significance for promoting the development of computer network security.
作者 张杰 黄仁书 林金霞 Zhang Jie;Huang Renshu;Lin Jinxia(Xiamen Institute of Software Technology,Xiamen 361024,China)
出处 《黑河学院学报》 2018年第7期209-210,共2页 Journal of Heihe University
基金 福建省中青年教师教育科研项目"基于DeepLearning算法的漏洞扫描技术的研究与实现"(JAT171205)
关键词 深度学习算法 漏洞扫面 技术研究 deep learning algorithm vulnerability scanning technology research
  • 相关文献

参考文献3

二级参考文献40

  • 1龙银香.一种新的漏洞检测系统方案[J].微计算机信息,2005,21(5):228-229. 被引量:12
  • 2Iintel,Common Security.CDSA and CSSM[S].Version 2(with corrigenda),The Open Group,May 2000
  • 3技术白皮书 .安氏互联网安全系统(中国)有限公司.2004.3
  • 4王琦,操晓春.中国计算机学会通讯[J].2015,P60-62.
  • 5WarrenS McCulloch and Walter Pitts. A logical calculus of the ideas immanentin nervous activity. The bulletin of mathematical biophysics, 1943,5 (4) :115 -133.
  • 6Hopfield J J. Neural Networks and Physical Sys- tems with Emergent Collective Computational Abil- ities, Proc Natl Aead Sci. USA, 1982, (79) : 2254 - 2558.
  • 7E Rumelhart, G E Hinton, R J Williams. Learn- ng internal representations by error propagation. ature , 1986,323 (99) :533 - 536.
  • 8http://deepleaming, stanford, edu/wiki/index. php/UFLDL_Tutorial.
  • 9http://blog, csdn. net/datoubo/article/details/ 8577366.
  • 10Geoffery E Hinton, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006,313 (5786) :504 - 7.

共引文献136

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部