期刊文献+

一种地球静止轨道空间碎片主动清除方式 被引量:2

An active removal method of space debris in geostationary orbit
下载PDF
导出
摘要 首先讨论国内外对空间碎片主动清除技术的研究进展,分析空间碎片清除平台的功能要求。然后提出一种静止轨道空间碎片主动清除方式,即通过空间碎片清除平台发射出粘性弹丸与目标空间碎片进行非弹性碰撞,使空间碎片获得一定的速度增量,进而被推离原轨道。其次,对粘性弹丸的轨道转移过程进行建模,推导出拦截时间、弹丸飞行距离等要素与姿态俯仰角的关系。最后,利用Simulink对弹丸的轨道转移过程进行了仿真,分析拦截时间t,飞行轨迹长度S与弹丸俯仰角(弹丸出射速度与碎片清除平台速度的夹角)的关系。 An active removal method of space debris in the geostationary orbit is proposed after discussing the research progress of active removal technology of space debris at home and abroad,and analyzing the functional requirements of the space debris removal platform.The viscous projectile is launched from the space debris removal platform to make inelastic collision with the debris in target space,so that the space debris can obtain a certain velocity increment and be pushed away from the original orbit.The orbit transfer process of the viscous projectile is modeled,and the relationship of interception time and projectile flight distance to the pitch angle of the attitude is deduced.The orbit transfer process of the projectile is simulated by Simulink.The relationship of the interception time t and flight trajectory length S with the pitch angle of the projectile(the included angle between the ejected velocity of the projectile and the velocity of the debris removal platform)is analyzed.
作者 张治彬 李新洪 安继萍 贺广松 王谦 ZHANG Zhibin;LI Xinhong;AN Jiping;HE Guangsong;WANG Qian(Astronautics Engineering University,Beijing 101416,China)
机构地区 航天工程大学
出处 《现代电子技术》 北大核心 2018年第16期88-91,共4页 Modern Electronics Technique
关键词 空间碎片 主动清除技术 地球静止轨道 粘性弹丸 碎片拦截 SIMULINK space debris active removal technology geostationary orbit viscous projectile debris interception Simulink
  • 相关文献

参考文献7

二级参考文献30

  • 1P J Erbland,C Duffield,D Homan, et al. Technology development roadmap for the space operations vehicle[C]// AIAA Space 2001 Conference and Exposition, Album querque, NM, Aug. 28 - 30, 2001:2001-4604.
  • 2刘敦,赵钧.空间飞行器动力学[M].哈尔滨:哈尔滨工业大学出版社,2003:17-49.
  • 3Spencer D B, Luu K K, Campbell W S, etal. Orbital debris hazard assessment methodologies for satellite constellations [J]. Journal of Spacecraft and Rockets, 2001, 38(1): 120-125.
  • 4Pardini C, Hanada T, Krisko P H, et al. Benefits and risks of using electrodynamic tethers to de-orbit space-craft [J].Acta Astronautica, 2009, 64 (5-6) : 571-588.
  • 5Forward R L, Hoyt R P, the Terminator TetherTM Uphoff C. Application of electrodynamic drag technotogy to the deorbit of constellation spacecraft [C]// 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA-98-3491.
  • 6Mankala K K, Agrawal S K. Equilibrium to equilibrium maneuvers of rigid electrodynamic tethers[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3) : 541-545.
  • 7Corsi J, Iess L. Stability and control of electrody- namic tethers for deorbiting applicationg [J].Acta Astronautica, 2001, 48(5-12): 491-501.
  • 8Hoyt R P, Smith P. The remora remover: A zerodebris method for on-demand disposal of unwanted LEO spacecraft [C]// Joint Propulsion Conference. Huntsville, AL:[s. n. ], 2000.
  • 9Peleaez J, Ruiz M, Lepez Rebollal O, etal. Two-bar model for the dynamics and stability of electrodynamic tethers[J].Journal of Guidance, Control, and Dynamics, 2002, 25(6): 1125-1135.
  • 10Chucheepsakul S, Srinil N, Petchpeart P. A variational approach for three-dimensional model of extensible marine cables with specified top tension [J]. Applied mathematical Modelling, 2003, 27: 781-803.

共引文献108

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部