期刊文献+

基于稀疏编码与反向索引的鞋印图像比对算法 被引量:1

Shoeprint Image Matching Algorithm Based on Sparse Coding and Invert Indexing
下载PDF
导出
摘要 针对刑侦工作中大规模鞋印图像库的查询应用需求,提出一种基于稀疏编码与反向索引的快速比对算法。首先,对鞋印图像进行视觉增强、中值滤波与二值分割等预处理,并提取其尺度不变特征变换(SIFT)特征;然后,基于聚类字典构造、稀疏编码(SC)与最大池化等方法,计算鞋印图像的稀疏编码特征;最后,通过构建"词-图像矩阵"而建立每个视觉单词的反向索引(RI)表,并据此提出一种SC-RI鞋印图像比对新算法。基于16 343幅真实鞋印图像的试验结果表明,SC-RI算法完成一次比对平均耗时约为121.26ms,较之传统SIFT匹配穷举比对方法,其速度提高了140多倍,且局部花纹比对TOP 20正确率可达到95.3%。 Focused at the query application into the large-scale shoeprint image library for criminal investigation,a fast matching algorithm,based on sparse coding and invert indexing,was proposed here.Firstly,the shoeprint images were preprocessed by the manipulation of visional enhancement,median-value filter and binary segmentation so as to extract the Scale Invariable Feature Transformation(SIFT)specifics for every shoeprint image.Then,in combination of clustering dictionary learning,sparse coding(SC)and maximum pooling handling,a calculation was carried out on the sparse coding feature of shoeprint images.Finally,through a“word-image matrix”to be constructed,a reverse indexing(RI)table was set up for each visual word so that a new algorithm,named SC-RI,was set up for fast matching of shoeprint image.Experimental results from 16343 real shceprintsimages showed that the SC-RI algorithm fulfilled a matching within about 121.26 milliseconds,being 140 times higher than that of the traditional SIFT-exhaustive matching choice,making the TOP 20’s accuracy reach up to 95.3%for local pattern matching in shoeprint image query.
作者 李大湘 邱鑫 刘颖 LI Daxiang;QIU Xin;LIU Ying(School of Telecommunication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710000,China;Ministry of Public Security’s Key Laboratory of Electronic Information Application Technology for Scene Investigation,Xi’an 710072,China)
出处 《刑事技术》 2018年第4期282-287,共6页 Forensic Science and Technology
基金 陕西省国际合作交流项目(No.2017KW-013) 公安部科技强警基础工作专项项目(No.2014GABJC022) 中国博士后科研基金项目(No.2013M542386)
关键词 鞋印图像比对 稀疏编码 反向索引 局部特征提取 shoe image matching sparse coding invert indexing local feature extraction
  • 相关文献

参考文献5

二级参考文献30

  • 1Farrugia KJ,Bandey H,Bleay S and Nic Daéid N.Chemical enhancement of footwear impressions in urine on fabric[J].Forensic Science International January,2012,214(1-3):69.
  • 2张金.硝酸银显现潜在穿鞋尿足迹研究[D].北京:中国人民公安大学,2010.
  • 3Vernon W, Paw] A, Pour M. Moviig Towards Cx,a-tts: Fire Draft: of an Evahae Ir'rtltal Grid to h,l:et Shoewlr Pam, weqJ].JotmM ofFom lck'nfifafion, 1999, 49(2): 142173.
  • 4Philip de Chaafl, John Fly,m, Ric|xmt B. Reilly. Autonuted Procem'tg ofShoepmlt/nrtges Ba'd on the Former Tratorm fbr trse ha Forcwtic .ex'ience[J]. IFEE Tramacfiom on Pattern AiMys and Machhle Intelligence. 2(X)5, 27(3): .MI-30.
  • 5M. A. Khan, S. M. Tice. Automated Proce,fing of Shoepmat Images for Use ha Forertsic- ,Science[J]. International Jotm of Advanced Research it1 Computer uad Cotmnunication F2agheering, 2(11), 2013: 4292-4294.
  • 6Ojala T, Piefikamen M, Harwood D. A C.o,warative Study of Texttwe Me, tmres with Ckx-fification Bxt on Featured EKm'ibutiom[J]. Patti Recoglfifion, 2006, 29(1): 51-59.
  • 7Datar M, Inmlortica N, Indyk P, et al. L(x'aty,ell.five I-hshhag Scheme based on P-stable Dislribufiom[C]. Pr{xeeditgs of the Twentieth Anmul Symtxum on Computational Geomem/ New York,2004: 263-262.
  • 8Bodziak W J. Footuear Impression Evidence: Detection, Recov- ery, and Examination[ M]. New York: CRC press, 2000.
  • 9Jain A K. Data clustering: 50 years beyond K-means [ J ]. Pat- tern Recognition Letters, 2010, 31 (8): 651-666. [DOI: 10. 1016/j. patree. 2009.09. 011 ].
  • 10Ng R T, Han J W. CLARANS: a method for clustering objects for spatial data mining[ J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(5) : 1003-1016. IDOl: 10. 1109/ TKDE. 2002. 1033770 ].

共引文献11

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部