1TZIKAS D, LIKAS A, GALATSANOS N. Sparse Bayesian Modeling With Adaptive Kernel Learning[J]. IEEE transactions on neural networks/a publication of the IEEE Neural Networks Council, 2009.
2MACKAY D. The evidence framework applied to classification networks[J], neural computation, 1992,4 (5), 720 - 736.
3TIPPING M, FAUL A. Fast marginal likelihood maximisation for sparse Bayesian models[A]. (Citeseer) ,2003.
4TZIKAS D, LIKAS A, GALATSANOS N. Large scale multikernel RVM for object detection[J]. Lecture notes in computer science, 2006. 3955:389-395.
5CAMPS VALLS G, MARTNEZ RAMN M, ROJO LVAREZ J L, et al. Nonlinear System Identification With Composite Relevance Vector Machines[J]. IEEE signal processing letters, 2007, 14 : 279- 298.
6VAPNIK V N. Statistical Learning Theory[M]. New York, 1998.
7ROBERT C, CASELLA G. Monte Carlo statistical methods [M]. Springer Verlag,2004.
8CORTES C, VAPNIK V. Support--vector networks[J]. Machine learning, 1995,20(3), 273-297.
9SEBALD D, BUCKLEW J. Support vector machine techniques for nonlinear equalization[J]. IEEE Transactions on Signal Processing, 2000,48(11) :3217-3226.
10TONG S, KOLLER D. Support vector machine active learning with applications to text classification[J]. The Journal of Machine Learning Research, 2002, (2) : 45 - 66.