期刊文献+

氮气在泡沫铜内的流动传热特性模拟研究 被引量:1

NUMERICAL SIMULATION OF FLOW AND HEAT TRANSFER CHARACTERISTICS OF NITROGEN IN COPPER FOAM
下载PDF
导出
摘要 为探究氮气在多孔介质泡沫铜内的流动传热特性,应用FLUENT软件对低温制冷机冷头换热器中填充的泡沫铜进行数值模拟分析。研究了孔隙率、孔密度以及入口流速对流动、传热的影响规律,模拟结果表明,孔隙率较大、孔密度较小时,渗流性能较好,流体速度衰减较慢;随着孔隙率减小,流体压力损失增大,换热效果提高,但提高的趋势渐缓,因而可能存在压损与温降比值最小的最优孔隙率;孔密度增大,由无滑移壁面引起的压力损失增大,换热性能变差。 In order to investigate the flow and heat transfer characteristics of nitrogen gas in porous medium copper foam,a numerical simulation analysis of copper foam filled in cold head heat exchanger of cryocooler is carried on by FLUENT software.The effects of porosity,pore density,and inlet flow velocity on flow and heat transfer are studied in detail.The simulation results show that the seepage performance is good and the fluid velocity drops slowly when the porosity is large and the pore density is small.As the porosity decreases,the fluid pressure loss increases and the heat transfer performance becomes better,but the trend gradually slows.Therefore,there exists an optimal porosity with a minimum ratio of pressure loss and temperature drop.As the pore density increases,the fluid pressure loss caused by non-sliding wall increases,and the heat transfer performance deteriorates.
作者 陈曦 凌飞 CHEN Xi;LING Fei(School of Power and Energy Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《真空与低温》 2018年第4期237-241,共5页 Vacuum and Cryogenics
基金 国家自然科学基金项目(50906054)
关键词 氮气 泡沫铜 传热 数值模拟 孔隙率 nitrogen copper foam heat transfer numerical simulation porosity
  • 相关文献

参考文献3

二级参考文献31

  • 1方晨,彭晓峰,杨震.多孔介质内两相流汽相输运分析[J].工程热物理学报,2004,25(6):1007-1009. 被引量:1
  • 2[1]Williams R R,Harris D K.Cross-plane and In-Plane Porous Properties Measurements of Thin Metal Felts:applications in Heat Pipes[J].Experimental Thermal and Fluid Science,2003,27:227 ~ 235.
  • 3[2]Singh M,Mohanty K K.Dynamic Modeling of Drainage through Three-Dimensional Porous Materials[J].Chemical Engineering Science,2003,58:1 ~ 18.
  • 4[3]Kuzhir P,Bossis G,Bashtovoi V et al.Flow of Magnetorheological Fluid through Porous Media[J].European Journal of Mechanics B/Fluids,2003,22:331 ~ 343.
  • 5[4]Benkrid K,Rode S,Midoux N.Prediction of Pressure Drop and Liquid Saturation in Trickle -Bed Reactors Operated in High Interaction Regimes[J].Chemical Engineering Science,1997,52:4021 ~ 4032.
  • 6[5]Choi E,Chakma A,Nandakumar K.A Bifurcation Study of Natural Convection in Porous Media with Internal Heat Sources:the Non-Darcy Effects[J].International Journal of Heat and Mass Transfer,1998,41(2):373 ~392.
  • 7[6]Rabadi N J,Mismar S A.Enhancing Solar Energy Collection by Using Curved Flow Technology Coupled with Flow in Porous Media:An Experimental Study[J].Solar Energy,2003,75:261 ~ 268.
  • 8[7]Izadpanah M R,Müller-Steinhagen H,Jamialahmadi M.Experimental and Theoretical Studies of Convective Heat Transfer in a Cylindrical Porous Medium[J].International Journal of Heat and Fluid Flow,1998,19:629 ~635.
  • 9[9]Seguin D,Montillet A,Comiti J.Experimental Characterization of Flow Regimes in Various Porous Media-Ⅰ:Limit of Laminar Flow Regime[J].Chemical Engineering Science,1998,53(21):3751 ~ 3761.
  • 10[10]Seguin D,Montillet A,Comiti J et al.Experimental Characterization of flow Regimes in Various Porous Microsoftedia-Ⅱ:Transition to Turbulent Regime[J].Chemical Engineering Science,1998,53(22):3897 ~3909.

共引文献30

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部