期刊文献+

基于时空聚类算法的轨迹停驻点识别研究 被引量:14

Anchors Identification in Trajectory Based on Temporospatial Clustering Algorithm
下载PDF
导出
摘要 利用手机等智能移动终端获取个体出行GPS轨迹数据,提出了一种新的时空聚类算法AT-DBSCAN识别轨迹中的停驻点.该方法以固定长度的滑窗搜索核心点,以时空邻近条件定义簇间距离,以簇密度大小规定合并次序.提出了出行次数一致性、出行起止时刻误差、停驻点时长误差、停驻点中心偏移距离4个算法验证指标,弥补了传统查全率、查准率等忽略停驻点时空信息准确性的不足.结果表明,识别的停驻点有98%的位置误差在30 m以内,100%的时长误差在5 min以内,98%的出行起止时刻误差在5 min以内.此外,算法对于室内活动、定位飘移、路径重合程度高等复杂轨迹具有较好的泛化能力. Based on the individual GPS data collected by the mobile terminal like smartphones,a novel spatiotemporal clustering algorithm called AT-DBSCAN is proposed to identify anchors in the trajectories.In this algorithm,the core points are found and checked within a sliding window,the similarity is defined by the temporospatial difference,and clusters are merged according to the density.Rather than using the recall or precision to evaluate results,the consistency of travel times,the comprehensive bias when the travel starts and ends,the difference between anchors duration,and the central distance between the true and identified anchors,are proposed and applied to get the exact temporal-spatial information.Results suggest that 98 percent anchors’distances are less than 30 meters,100 percent duration difference are less than 5 minutes,and 98 percent travel time difference are within 5 minutes.Besides,the proposed algorithm also has a good performance in generalization of indoor activity,positioning drift and severe overlying segments.
作者 周洋 杨超 ZHOU Yang;YANG Chao(Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2018年第4期88-95,共8页 Journal of Transportation Systems Engineering and Information Technology
关键词 信息技术 停驻点识别 时空聚类算法 个体出行调查 GPS information technology anchor identification spatiotemporal clustering algorithm individual travel survey GPS
  • 相关文献

参考文献8

二级参考文献116

  • 1杨飞,裘炜毅.基于手机定位的实时交通数据采集技术[J].城市交通,2005,3(4):63-68. 被引量:36
  • 2胡小文,冯均佳.基于GPS数据采集的出租汽车交通运行特点研究[J].城市交通,2007,5(2):91-95. 被引量:26
  • 3李小文,曹春香,常超一.地理学第一定律与时空邻近度的提出[J].自然杂志,2007,29(2):69-71. 被引量:116
  • 4季民河,张治华,邓中伟.GPS出行调查中信息自动提取研究进展[EB/OL].http://www.paper.edu.cn/index.php/default/releasepaper/content/201101-252,2011.
  • 5WOLF J,GUENSLER R,BACHMAN W.Elimination of the travel diary:experiment to derive trip purpose from global positioning system travel data[J].Transportation Research Record:Journal of the Transportation Research Board,2001,1768 (1):125-134.
  • 6PEARSON D.Global positioning system (GPS) and travel surveys:results from the 1997 austin household survey[C]// 8th Conference on the Application of Transportation Planning Methods,2001.
  • 7DU J,A-H L.Increasing the accuracy of trip rate information from passive multi-day GPS travel datasets:automatic trip end identification issues[J].Transportation Research Part A,2007,41(3):220-232.
  • 8FORREST T L,PERSON D F.Comparison of trip determination methods in household travel surveys enhanced by a global positioning system[J].Transportation Research Record:Journal of the Transportation Research Board,2005,1917(1):63-71.
  • 9HARIHARAN R,TOYAMA K.Project lachesis:parsing and modeling location histories[J].Geographic Information Science,2004:106-124.
  • 10ZHOU C,FRANKOWSKI D,LUDFORD P,et al.Discovering personal gazetteers:an interactive clustering approach[C].ACM,2004.

共引文献109

同被引文献110

引证文献14

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部