期刊文献+

基于HDL-64E激光雷达道路边界实时检测算法 被引量:2

An approach of real-time road boundary detection based on HDL-64E lidar
下载PDF
导出
摘要 为了使智能车辆在多种道路环境中能够快速有效地提取前方道路,文章提出一种基于HDL-64E激光雷达的道路边界检测算法。该算法首先对激光雷达数据进行空间邻域分析,获取平滑度特征图像;然后利用自适应方向边界搜索算法获取候选道路边界激光雷达数据;为了解决激光雷达数据中存在的干扰及不连续问题,对候选道路边界激光雷达数据进行聚类分析及曲线拟合。实验结果表明,在高速、城区以及乡村道路环境下,该算法能够实时、准确地提取道路边界信息,满足智能车辆道路环境建模及路径规划的需要。 In order to enable intelligent vehicle to extract the front road in a variety of road environment effectively,an approach of road boundary detection based on HDL-64E lidar is presented.Firstly,the image of smoothness characteristics change is gotten by analyzing the spatial neighborhood of lidar data.Then the candidate lidar data of road boundary is gotten by using adaptive directional circular search.Moreover,to solve the interference and discontinuous problem of lidar data,the algorithms of cluster analysis and curve fitting are presented to process the candidate lidar data of road boundary.Experimental results demonstrate that the approach can accurately extract road boundary information in urban and rural road and highway environment,and meet the needs of road environment modeling and intelligent vehicle path planning.
作者 王俊 孔斌 王灿 杨静 WANG Jun;KONG Bin;WANG Can;YANG Jing(Institute of Intelligent Machines,Chinese Academy of Sciences,Hefei 230031,China;School of Information Science and Technology,University of Science and Technology of China,Hefei 230026,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第8期1029-1034,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金重大研究计划集成资助项目(91320301) 国家自然科学基金资助项目(61304122) 中国科学院战略性先导科技专项资助项目(XDA0804109)
关键词 HDL-64E激光雷达 平滑度特征 自适应方向边界搜索 聚类分析 曲线拟合 HDL-64E lidar smoothness characteristics adaptive directional circular search cluster analysis curve fitting
  • 相关文献

参考文献4

二级参考文献41

  • 1赵于前,王小芳,李桂源.基于多尺度多结构元素的肝脏图像分割[J].光电子.激光,2009,20(4):563-566. 被引量:12
  • 2Chiu K Y, Lin S F. Lane detection using color-based segmentation. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Washington D. C., USA: IEEE, 2005. 706-711.
  • 3Azali S, Jason T, Hijazi M H A, Jumat S. Fast lane detection with randomized hough transform. In: Proceedings of the Information Symposium on Information Technology. Kuala Lumpur, Malaysia: IEEE, 2008. 1-5.
  • 4Meuter M, Muller-Schneiders S, Mika A, Hold S, Nunn C, Kummert A. A novel approach to lane detection and tracking. In: Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems. St. Louis, USA: IEEE, 2009. 1-6.
  • 5Banggui Z, Bingxiang T, Jianmin D, Dezhi G. Automatic detection technique of preceding lane and vehicle. In: Proceedings of the IEEE International Conference on Automation and Logistics. Qingdao, China: IEEE, 2008. 1370-1375.
  • 6Xu Jie, Li Xiao-Hu, Wang Rong-Ben, Shi Peng-Fei. Road edge detection technique for auto-navigation of vehicle. Journal of Image and Graphics. 2003, 8(6): 674-678.
  • 7Watanabe A, Naito T, Ninomiya Y. Lane detection with roadside structure using on-board monocular camera. In: Proceedings of the IEEE Intelligent Vehicles Symposium. Xi'an, China: IEEE, 2009. 191-196.
  • 8Liu Fu-Qiang, Tian Min, Hu Zhen-Cheng. Research on vision-based lane detection and tracking for intelligent vehicles. Journal of Tongji University (Natural Science), 2007, 35(11): 1535-1541.
  • 9Wang Y, Teoh E K, Shen D G. Lane detection and tracking using B-Snake. Image and Vision Computing, 2004, 22(4): 269-280.
  • 10Truong Q B, Lee B R. New lane detection algorithm for autonomous vehicles using computer vision. In: Proceedings of the IEEE International Conference on Control, Automation and Systems. Seoul, Korea: IEEE, 2008. 1208-1213.

共引文献63

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部