期刊文献+

胶体光子晶体修饰光纤及相对湿度检测应用 被引量:2

Colloidal photonic crystal modified optical fiber and relative humidity detection application
下载PDF
导出
摘要 本文提出了一种用胶体光子晶体来装饰单模光纤装饰端面的方法,并说明了这种结构用于相对湿度传感器的原理。研究了用垂直沉积法在光纤端面制备PS(polystyrene)胶体晶体、复合胶体晶体和SiO_2反蛋白石(inverse opal)的技术,用扫描电子显微镜表征了制备得到的胶体晶体及反蛋白石,测量了端面被胶体晶体修饰光纤的反射光谱,并测试了光纤端面复合光子晶体的相对湿度传感特性。提出了一种毛细管-光纤结构,提高了生长在光纤端面处胶体晶体的质量和其机械稳定性。 This paper propose a route to decorated end facet of single mode optical fibers with colloidal photonic crystals and present the principle for this structure to be used as relative humidity sensing.The approaches of preparing PS colloidal crystals,composite colloidal crystals,and SiO2 inverse opals on the end faces of optical fibers by vertical deposition was studied.The prepared colloidal crystals and inverse opal were structurally characterized,and the reflection spectra of the photonic crystals-modified microstructure optical fibers was measured.The relative humidity sensing characteristics of composite photonic crystals decorated microstructure optical fibers were tested.Finally,a capillary-fiber structure was proposed to improve the quality and mechanical stability of the colloidal crystals fabricated on the fiber endfaces.
作者 潘超 周俊萍 倪海彬 Pan Chao;Zhou Junping;Ni Haibin(School of Electronics and Information Engineering,Nanjing University of Information Science and Technology,Nanjing,Jiangsu 210044,China;Jiangsu Key Laboratory of Meteorological Observation and Signal Processing,Nanjing,Jiangsu 210044,China)
出处 《光电工程》 CAS CSCD 北大核心 2018年第9期122-128,共7页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61605082) 江苏省自然科学基金资助项目(BK20160969) 江苏省高校基金资助项目(16KJB510020) 江苏省高等教育重点学科建设项目资助项目(PAPD) 国家博士后基金资助项目(2017M611654) 江苏省博士后基金资助项目(1701074B) 南信大人才启动基金资助项目(2015r040) 江苏省气象观测与信息处理重点实验室开放项目资助项目(KDXS1506)~~
关键词 胶体晶体 光纤 反蛋白石 反射光谱 colloidal crystals micro structure optical fibers inverse opal relative humidity sensing
  • 相关文献

参考文献3

二级参考文献25

  • 1P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater 11, 2132 (1999).
  • 2Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12, 693 (2000).
  • 3Y. H. Ye, F. LeBlanc, A. Hache, and V. V. Truong, Appl. Phys. Lett. 78, 52 (2001).
  • 4M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
  • 5E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
  • 6S. John, Phys. Rev. Lett. 58, 2486 (1987).
  • 7M. Raul, R. Joaquin, S. M. Jos, L. Cefe, C. Adelaida, M. Hernan, M. Francisco, V. Luis, H. Miguel, and B. Alvaro, Adv. Mater. 9, 257 (1997).
  • 8S. Wong, V. Kitaev, and G. A. Ozin, J. Am. Chem. Soc. 125, 15589 (2003).
  • 9L. V. Woodcock, Nature 385, 141 (1997).
  • 10F. Kopnov, V Lirtsman, and D. Davidov, Synthetic Met. 137, 993 (2003).

共引文献16

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部