期刊文献+

阈值阵列系统中TCM编译码的随机共振现象

Stochastic Resonance of TCM Coding and Decoding in Threshold Array Systems
下载PDF
导出
摘要 为了进一步降低网格编码调制(TCM)信号在接收端的误码率(BER),提高TCM码的译码性能。采用了一种离散的多阈值阵列系统与维特比译码器相结合的系统。并经过理论推导出阈值阵列系统输出端信号和TCM编码信号之间的互信息;同时通过仿真实验,分析了误码率的变化情况;并对两种不同测度下的变化情况进行了对比。理论分析表明,在适当噪声条件下,使信号无损传输到译码端;仿真实验也表明,在适当的噪声强度阈值阵列单元数量和噪声强度条件下,误码率会得到大幅度的降低。对比两种测度下的随机共振现象(SR),发现随机共振的存在性与测度有关。理论分析和仿真实验都表明,在该系统中适当的噪声能够显著提高互信息,降低误码率;随着阈值单元数的增加,这种效果也越发明显。 In order to further reduce the bit error rate(BER)of the trellis coded modulation(TCM)signal at the receiving end,the decoding performance of the TCM code is improved,A discrete multi-threshold array system combined with a Viterbi decoder is used.The mutual information between the output signal of the threshold array system and the TCM coded signal is deduced through theory.At the same time,the variation of the BER is analyzed through simulation experiments.The changes under two different measures are compared.Theoretical analysis shows that under proper noise conditions,the signal is transmitted losslessly to the decoding end;Simulation experiments also show that BER will be greatly reduced under the appropriate number of noise intensity threshold array elements and noise intensity.Comparing the stochastic resonance(SR)under two measures,we found that the existence of stochastic resonance is related to the measurement.Theoretical analysis and simulation experiments show that proper noise in this system can significantly improve mutual information and reduce BER.As the number of threshold cells increases,this effect becomes more pronounced.
作者 李恒 王友国 翟其清 LI Heng;WANG Youguo;ZHAI Qiqing(College of Communication and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing Jiangsu 210003,China)
出处 《复杂系统与复杂性科学》 EI CSCD 2018年第1期68-74,共7页 Complex Systems and Complexity Science
基金 国家自然科学基金(61179027) 江苏省"青蓝工程"基金(QL06212006)
关键词 随机共振 多阈值阵列系统 互信息 误码率 TCM编码 Stochastic Resonance multi-threshold array system mutual information bit error rate Trellis Coded Modulation
  • 相关文献

参考文献6

二级参考文献48

  • 1Gammaitoni L, Hanggi P, Jung P, et al. Stochastic resonance[J]. Reviews of Modern Physics, 1998,70 (I) 223-287.
  • 2Wiesenield K, Pierson D. Stochastic resonance on a circle[J]. Physical Review Letters, 1994,72 (14) : 2125-2129.
  • 3Stocks N G. Suprathreshold stochastic resonance in multilevel threshold systems [J]. Physical Review Letters, 2000,84(11) : 2310-2313.
  • 4McDonnell M D. Theoretical aspects of stochastic signal quantisation and suprathreshold stochastic res- onance[D]. Australia: University of Adelaide, 2006 : 102-130.
  • 5Chapeau F, Godivier X. Theory of stochastic reso- nance in signal transmission by static nonlinear sys- tems[J]. Physical Review E, 1997, 55(2): ]478- 1495.
  • 6Rompelman O, Ros H H. Coherent averaging tech- nique: A tutorial review. Part 1 : Noise reduction and the equivalent filter[J]. Journal of Biomedical Engi- neering, 1986,8(1) :24-29.
  • 7Stocks N G. Information transmission in parallel threshold arrays: Suprathreshold stochastic reso- nance[J]. Physical Review E, 2001,63(4):1-9.
  • 8Rousseau D, Anand G V, Chapeau F. Noise- enhanced nonlinear detector to improve signal detec- tion in non-Gaussian noise[J]. Signal Processing,2006,86,3456-3465.
  • 9Jha R K, Biswas P K, Chatterji B N. Image segmen- tation using suprathreshold stochastic resonance[J]. World Academy of Science, Engineer and Technolo- gy, 2010,72:695-709.
  • 10Patel A, Kosko B. Noise benefits in quantizer-array correlation detection and watermark decoding [J] IEEE Transactions on Signal Processing, 2011, 59 (2) :488-505.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部