期刊文献+

某类上半平面的调和拟共形同胚的凸组合

A Class of Harmonic Quasi-conformal Mappings of the Upper Semi-planes onto Itself
下载PDF
导出
摘要 本文以实轴上某类递增自同胚及其凸组合为边界函数,研究了其延拓到上半平面的调和拟共形自同胚,估计了其伸张函数,并将此伸张函数与其在Beurling-Ahlfors延拓下做了比较。 In this paper,a class of increasing selfhomeomorphism and its convex combination on the real axis as boundary functions,the harmonic quasiconformal homeomorphism of the upper half plane is studied,and the extension function is estimated.The extension function is compared with the Beurling-Ahlfors extension.
作者 孙祚晨 王麒翰 龙波涌 SUN Zuochen;WANG Qihan;LONG Boyong(School of Mathematical Sciences,Anhui University,Hefei 230601,China)
出处 《安庆师范大学学报(自然科学版)》 2018年第3期13-17,29,共6页 Journal of Anqing Normal University(Natural Science Edition)
基金 国家自然科学基金青年项目(11501001) 安徽省高校自然科学研究重点项目(KJ2017A029) 安徽大学科研项目(J01006023 Y01002428)
关键词 调和映射 拟共形映射 凸组合 伸张函数 HILBERT变换 harmonic mapping quasi-conformal mapping convex combinations extension functions Hilbert transformations
  • 相关文献

参考文献3

二级参考文献24

  • 1L.Ahlfors. Lecture on Quasiconformal mappings[M]. Van Nostrand Mathematical studies,D.Van Nostrand, 1996.
  • 2D.Kalaj,M.Pavlovic. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J]. Ann. Acad.Sci. Fenn. Math., 2005, (30): 159-165.
  • 3S.Axler, P.Bourdon, and W.Ramey. Harmonic function theory[M]. New York: Springer-Verlag, 1992.
  • 4O.Martio. On harmonic quasiconformal mappings[J]. Ann. Acad.Sci.Fenn.Math., 1968:3-10.
  • 5D.Kalaj,M.Pavlovic. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J]. Ann. Acad.Sci. Fenn.Math., 2002, (27): 365-372.
  • 6Olli Letho. Univalent functions and teichmuller spaces[M]. New York: Spring-Verlag Inc,1987.
  • 7David Kalaj. Quasiconformal harmonic functions between convex domains[J]. Publications De L'institut Mathematique nouvelle serie.tome, 2004, 76(90): 3-20.
  • 8Ahlfors L.V.Lectures on Quasiconformal Mappings[M].New York:Nostrand Company,1966.63-73.
  • 9Lehtinen M.The dilatation of Beurling-Ahlfors extension of quasisymmetric functions[J].Ann.Acad.Sci.Fenn.Ser AI Math.,1983,8(1):187-191.
  • 10Chen Jixiu,Chen Zhiguo,He Chengqi.Boundary Correspondence under u(z)-Homeomorphisms[J].Michigan Math.J.,1996,43:211-220.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部