期刊文献+

利用主动微波遥感数据监测土壤墒情方法 被引量:1

Using active microwave remote sensing data to detect soil moisture
下载PDF
导出
摘要 采用主动微波遥感数据,选取郑州市中牟县范围内裸露的地表进行土壤墒情的监测工作,同时选择适合该类区域地表情况的AIEM模型来处理获取的相关雷达数据。实验所用影像数据为Rardarsat-2雷达卫星的遥感影像数据,其中雷达的一些相关参数都包含在影像的头文件中,在实验过程中通过查阅直接使用。实验使用欧空局的NEST软件对影像进行滤波和辐射定标等一系列操作,得到的中间格式数据使用ESRI公司的ENVI软件进一步处理得到地表后向散射系数。通过上述步骤得到的数据对ANN-BP进行训练,最后采用极化方式为VV和HH的数据,利用ANN-BP对数据进行模拟,得到该地区的土壤墒情信息。 Using the active microwave remote sensing data.The bare surface area we used to retrieval soil moisture was selected from the scope of zhongmou county,zhengzhou city.At the same time,we select the AIEM model which is suitable for the surface condition of this kind of area to process the related radar data.The image data of the experiment is the Rardarsat-2 radar satellite remote sensing image data,in which some of the relevant parameters of the radar are included in the header file of the image.Use the NEST software from ESA for image filtering and radiation calibration,and so on.The intermediate data format using envi software of ESRI company for further processing to get the ground backward scattering coefficient.The data we obtained by the above steps was used to train the ANN-BP.During the experiment we only use the polarization of VV and HH data.The data were simulated by ANN-BP was used to retrieval the area of soil moisture information.
作者 李朝阳 王普 潘方博 LI Chao-yang;WANG Pu;PAN Fang-bo(Eastern Waster Conservancy Bureau of Henan Province,Kaifeng 475000,China;College of Environment&Water Conservancy,Zhengzhou University,Zhengzhou 450001,China)
出处 《南水北调与水利科技》 CSCD 北大核心 2017年第A02期224-228,253,共6页 South-to-North Water Transfers and Water Science & Technology
关键词 土壤含水量 AIEM RADARSAT-2 ANN-BP Topp介电模型 soil water content AIEM radarsat-2 ANN-BP topp dielectric model
  • 相关文献

参考文献7

二级参考文献98

  • 1求真务实 开拓创新 努力做好农业遥感工作——杨坚司长在农业部遥感工作座谈会上的讲话[J].中国农业资源与区划,2005,26(1):1-5. 被引量:2
  • 2潘昊,王晓勇,陈琼,黄少銮.基于遗传算法的BP神经网络技术的应用[J].计算机应用,2005,25(12):2777-2779. 被引量:46
  • 3李翱翔,陈健.BP神经网络参数改进方法综述[J].电子科技,2007,20(2):79-82. 被引量:13
  • 4[1]Wood E. F. Global scale hydrology: advances in land surface modeling [J]. Rev. Geophysics, 1991, supplement, 193-201.
  • 5[2]Mo T, Schmugge T. J. and Wang J. R. Calculation of the microwave brightness temperature of rough soil surface: bare field [J]. IEEE Trans. Geosci. Remote Sensing, 1987, GE-25(1):47-54.
  • 6[3]Jackson T. J. Le Vine D.E. Mapping surface soil moisture usingan aircraft-based passive microwave instrument: algorithm and example [J].Journal of hydrology, 1996, 184:85-99.
  • 7[4]Shi J, Wang J.R, Hsu A. Y.et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data [J]. IEEEE Trans. Geosci. Remote Sensing, 1997,35(5):1254-1266.
  • 8[5]Neil R. Peplinski, F. T. Ulaby and M. C. Dobson. Dielectric properties of soil in the 0.3-1.3 GHz range [J]. IEEEE Trans. Geosci. Remote Sensing, 1995,33(3):803-807.
  • 9[6]Wickel A. J. and Jackson T.J. Multitemporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment [J]. Int. J. Remote Sensing,2001, 22(8):1571-1583.
  • 10[7]Jackson T.J, Le Vine D.M, Swift C.T, Schmugge T.J. and Schiebe, F.R. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita 92 [J]. Remote Sensing of Environment, 1995,53:27-37.

共引文献89

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部