期刊文献+

应用空时相关性的单视频超分辨率算法

Single Video Super-Resolution by Using Spatio-temporal Correlation
下载PDF
导出
摘要 已有的单视频超分辨率算法大多基于精确的运动估计,当运动估计不准确时,超分辨率结果中将出现失真现象。针对这一问题,提出一种新的单视频超分辨率算法。通过三维非局部均值约束模型表征视频内的空时相关性,同时采用总变分模型表征视频帧内局部相似性。最后,为了求解所建立的最优化问题,提出了基于split-Bregman方法的快速迭代算法。实验结果表明,与同类算法相比,提出的算法获得了最佳客观及主观结果。 The traditional reconstruction-based single video super-resolution algorithms are able to solve the vidco super-reso-lution problem well.However,the existing algorithms strongly rely on the accuracy of the motion estimation.When the estimation is not accurate enough,some artifacts will appear in the super-resolved outcome.This paper proposes a new single video super-resolution algorithm to solve this problem.To this end,the three-dimensional non-local means is used to explore the inter-frame and intra-frame non-local structural property,and the total variation model is utilized to describe the local structural property.Finally,to solve the established optimization problem,a split-Bregman method-based iteration is proposed.The experimental results demonstrate the effectiveness of the proposed algorithm.Compared with other algorithms,the proposed one is able to achieve better subjective and objective results.
作者 陈诚 常侃 莫彩网 李天亦 覃团发 CHEN Cheng;CHANG Kan;MO Cai-wang;LI Tianyi;QIN Tuanfa(School of Computer and Electronic Information,Guangxi University,Nanning 530004,China;Guangxi Key Laboratory of Multimedia Communications and Net"work Technology,Guangxi University,Nanning 530004,China;Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information Processing,Guangxi University,Nanning 530004,China)
出处 《电视技术》 2018年第7期5-9,共5页 Video Engineering
关键词 视频超分辨率 三维非局部均值 总变分 Video super-resolution Three-dimensional non-local means Total variation
  • 相关文献

参考文献1

二级参考文献18

  • 1Baker S,Kanade T.Limits on super-resolution and how to break them.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1167-1183.
  • 2Mohammad Djafari A.Super-resolution:A short review,a new method based on hidden Markov modeling of HR image and future challenges.Computer Journal,2009,52 (1):126-141.
  • 3Elad,M,Feuer A.Restoration of a single superresolution image from several blurred,noisy,and undersampled measured images.IEEE Transactions on Image Processing,1997,6(12):1646-1658.
  • 4Park S C,Park M K,Kang M G.Super-resolution image reconstruction:A technical overview.IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 5Lin Z C,Shum H Y.Fundamental limits of reconstructionbased superresolution algorithms under local translation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):83-97.
  • 6Freeman W T,Jones T R,Pasztor E C.Example-based super-resolution.IEEE Computer Graphics and Applications,2002,22(2):56-65.
  • 7Freeman W T,Pasztor E C,Carmichael O T.Learning lowlevel vision.International Journal of Computer Vision,2000,40(1):25-47.
  • 8Chang H,Yeung D Y,Xiong Y.Super-resolution through neighbor embedding//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).Washington,DC,USA,2004:I275-I282.
  • 9Gao X,Zhang K,Tao D,et al.Joint learning for single-image super-resolution via a coupled constraint.IEEE Transactions on Image Processing,2012,21(2):469-480.
  • 10Yang J,Wright J,Huang T S,et al.Image super-resolution via sparse representation.IEEE Transactions on Image Processing,2010,19(11):2861-2873.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部