期刊文献+

基于Kinect的改进移动机器人视觉SLAM 被引量:4

Improved V-SLAM for mobile robots based on Kinect
下载PDF
导出
摘要 针对传统ICP(iterative closest points,迭代最近点算法)存在易陷入局部最优、匹配误差大等问题,提出了一种新的欧氏距离和角度阈值双重限制方法,并在此基础上构建了基于Kinect的室内移动机器人RGB-D SLAM(simultaneous localization and mapping)系统。首先,使用Kinect获取室内环境的彩色信息和深度信息,通过图像特征提取与匹配,结合相机内参与像素点深度值,建立三维点云对应关系;然后,利用RANSAC(random sample consensus)算法剔除外点,完成点云的初匹配;采用改进的点云配准算法完成点云的精匹配;最后,在关键帧选取中引入权重,结合g2o(general graph optimization)算法对机器人位姿进行优化。实验证明该方法的有效性与可行性,提高了三维点云地图的精度,并估计出了机器人运行轨迹。 Given that the traditional iterative closest points(ICP)algorithm easily falls into the local optimum and has a large matching error,a novel double restriction method containing Euclidean distance and angle threshold is proposed.To realize this,an indoor mobile robot RGB-D SLAM(simultaneous localization and mapping)using a Kinect camera was developed.First,the Kinect camera was used to get color information and depth information for the indoor environment.Through the image feature extraction and matching procedure,the relationship between two 3D point clouds was established by combining the camera intrinsic parameters and pixel depth values.Then,the initial registration was completed using the random sample consensus(RANSAC)algorithm to remove outliers.Meanwhile,accurate registration was completed using the improved ICP algorithm.Finally,the weight was introduced into the selection of the key frames,and the general graph optimization(g2o)algorithm was used to optimize the pose of the robot.The experimental results prove effectiveness and feasibility of the method,and this method improves the accuracy of the 3D point cloud map and estimates the trajectory of the robot.
作者 蔡军 陈科宇 张毅 CAI Jun;CHEN Keyu;ZHANG Yi(Chongqing Information Accessibility and Service Robot Engineering Technology Research Center,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《智能系统学报》 CSCD 北大核心 2018年第5期734-740,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61673079) 重庆市科学技术委员会资助项目(cstc2015jcyj BX0066)
关键词 移动机器人 KINECT 同时定位与地图构建 迭代最近点算法 关键帧 随机采样一致性 位姿估计 三维重建 mobile robot Kinect SLAM ICP key-frame RANSAC pose estimate three-dimensional reconstruction
  • 相关文献

参考文献2

二级参考文献54

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2解则晓,张成国,张国雄.线结构光测量数据的自动拼合方法[J].中国机械工程,2005,16(9):775-778. 被引量:18
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4Salvi J, Mataboseh C, Foil D, et al. A review of recent range image registration methods With accuracy evaluation [J]. Image and Vision Computing, 2007, 25(5):578-596.
  • 5Besl P J, Mckay N D. A method for registration of 3 d shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 1992, 14(2): 289-256.
  • 6Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm [C]. Quebec City, Canada: Proceedings of the 3^rd International Conference on 3D Digital Imaging and Modeling, 2001: 145-152.
  • 7Turk G, Levoy M. Zippered polygon meshes from range images [C]. Orlando, America:Proceedings of the 21^st Annual Conference on Computer Graphics and Interactive Techniques, 1996: 311-318.
  • 8Masuda T. Generation of geometric model by registration and integration of multiple range images [C]. Quebec City, Canada: Proceedings of the 3^rd International Conference on 3D Digital Imaging and Modeling, 2001: 254-261.
  • 9Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images [J]. Computer Vision and Image Understanding, 1995, 61(3): 295-307.
  • 10Gelfand N, Ikemoto L, Rusinkiewicz S, et al. Geometrically stable sampling for the ICP algorithm [C]. Banff, Canada: Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling, 2003: 260-267.

共引文献65

同被引文献24

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部