期刊文献+

基于卷积特征和贝叶斯分类器的人脸识别 被引量:6

Face recognition based on convolution feature and Bayes classifier
下载PDF
导出
摘要 为解决传统人脸识别算法特征提取困难的问题,提出了基于卷积特征和贝叶斯分类器的人脸识别方法,利用卷积神经网络提取人脸特征,通过主成分分析法对特征降维,最后利用贝叶斯分类器进行判别分类,在ORL(olivetti research laboratory)人脸库上进行实验,获得了99.00%的识别准确率。实验结果表明,卷积神经网络提取的人脸图像特征具有很强的辨识度,与PCA(principal component analysis)和贝叶斯分类器结合之后可有效提高人脸识别的准确率。 To solve the difficulty of feature extraction of the traditional face recognition algorithm,a new method based on convolution feature and Bayes classifier is proposed,which uses convolution neural network to extract facial features and principal component analysis(PCA)to reduce the feature dimension,and finally,employs a Bayes classifier to classify the features.Experiments were carried out on the ORL face database,and a recognition accuracy of 99%was achieved.The experimental results show that the face features extracted by the convolution neural network have a strong degree of recognition.Therefore,the accuracy of face recognition in feature extraction can be effectively improved by combining PCA and Bayes classifier with convolution neural network.
作者 冯小荣 惠康华 柳振东 FENG Xiaorong;HUI Kanghua;LIU Zhendong(School of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《智能系统学报》 CSCD 北大核心 2018年第5期769-775,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(U1233113 61571441) 中央高校基金项目(ZXH2012M005 3122014C016) 中国民航大学科研启动基金项目(2010QD10X)
关键词 人脸识别 卷积神经网络 模式识别 深度学习 贝叶斯分类器 face recognition convolutional neural network pattern recognition deep learning Bayes classifier
  • 相关文献

参考文献6

二级参考文献63

  • 1刘刚,张洪刚,郭军.不同训练样本对识别系统的影响[J].计算机学报,2005,28(11):1923-1928. 被引量:15
  • 2Davidiv D, Tsur O,Rappoport A. Enhanced Sentiment Learn-ing Using Twitter Hash-Tags and Smileys[C]//Proc of COLING' 10,2010241 249.
  • 3Barbosa L, Feng J. Robust Sentiment Detection on Twitter from Biased and Noisy Data[C] //Proc of COLING' 10, 2010 : 36-44.
  • 4J iang L, Y u M, Zhou M, et al. Target-Dependent Twitter Sen- timent Classification[C]//Proc of the 49th Annual Meeting of the Applicational Linguistics,2011:151-160.
  • 5Tan L K-W,Na J C,Chang K Y. Sentence-Level Sentiment Po- larity Classification Using a Linguistic Approach[C]//Proc of ICADL'll,2011:77-87.
  • 6Pak A,Paroubek P. Twitter as a Corpus for Sentiment Anal- ysis and Opinion Mining[C]//Proc of LREC ' 10,2010 : 1320 1327.
  • 7Xin M J,Wu H X. A Public Opinion Classification Algorithm Based on Micro-Blog Text Sentiment Intensity Design and Implementation[C]//Proe of MECS ' I 1,2011:48-54.
  • 8Agarwal A, Xie B, Vovsha I, et al. Sentiment Analysis of Twitter Data[C]//Proe of Association for Computational Linguistics, 2009 :30-38.
  • 9丁守宏.基于分形分析的纹理特征提取[D].大连:大连理工大学,2011.
  • 10Guo ZH,Zhang L,Zhang D,et al.Rotation invariant texture classification using adaptive LBP with directional statistical features[C]//17th IEEE International Conference on Image Processing,2010:285-288.

共引文献140

同被引文献61

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部