摘要
考虑R^n(n≥1)中具有光滑边界的有界区域上具有齐次Neumann边界条件和Lengyel-Epstein反应格式的反应扩散模型,并分析常数稳态解的稳定性和Turing不稳定性,最后通过数值模拟验证理论预测的正确性.
This paper considers a reaction-diffusion model with the Lengyel-Epstein reaction scheme and subjects to the homogeneous Neumann boundary conditions on a bounded spatial domain in R^n(n≥1)with a smooth boundary.The stability of the constant steady-state solution and Turing instability are analyzed.Numerical simulations are also included in order to verify the obtained theoretical prediction.
作者
丁亚君
张存华
DING Ya-jun;ZHANG Cun-hua(Department of Mathematics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2018年第3期272-280,共9页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(61563026
61763024)