摘要
提出了区间线性规划问题代数最优解的概念,给出了在非负约束的条件下区间矩阵与区间向量乘积的刻画形式,在此基础上建立了区间线性方程组及区间线性不等式组代数可行性的等价条件.最后,建立了标准型区间线性规划问题代数最优解及代数最优值的有效算法,并用若干实例说明了算法的实施过程.
In this paper,the concept of algebraic optimal solution of interval linear programming problem is proposed,and the product of interval matrix and interval vector is given under nonnegative constraints,on this basis,we give the equivalent conditions for feasibility of interval linear equations and interval linear inequalities.Finally,an effective algorithm of algebraic optimal solution and algebraic optimal values for the standard interval linear programming problem is established,several examples are given to illustrate the implementation of the algorithm.
作者
胡金燕
李炜
金江红
HU Jin-yan;LI Wei;JIN Jiang-hong(Institute of Operational Research and Cybernetics,Hangzhou Dianzi University,Hangzhou 310018,China)
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2018年第3期350-356,共7页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(61673145
U1509217).
关键词
区间优化
非负约束
代数最优解
interval optimization
nonnegative constraints
algebraic optimal solution