期刊文献+

惰性基弥散燃料芯块有效热导率数值仿真分析 被引量:1

Numerical Simulation Analysis of Effective Thermal Conductivity of Inert Matrix Dispersion Pellet
下载PDF
导出
摘要 作为事故容错燃料的备选技术路线之一,惰性基弥散燃料芯块(IMDP,Inert Matrix Dispersion Pellet)的典型特征之一是具备高热导率。采用通用有限元软件ABAQUS,结合其二次开发功能,建立有限元计算模型,研究了IMDP燃料芯块有效热导率影响因素。研究表明,燃料颗粒在IMDP芯块基体中的分布形式以及燃料颗粒的形状对其有效热导率没有影响;惰性基体热导率相比燃料核心热导率对IMDP芯块有效热导率的影响更大;燃料颗粒—基体间热阻以及外部热解碳层—碳化硅层间热阻相比其他热阻对IMDP芯块有效热导率的影响更大;IMDP芯块的传热性能优于UO2芯块。 One typical characteristics of inert matrix dispersion pellet(IMDP)which was regarded as one of the alternative technical routes for accident tolerant fuel was high thermal conductivity.A finite element model was established by using the general finite element software ABAQUS combined with its two development functions,and the influence factors of the effective thermal conductivity of the IMDP pellet were studied.Results showed that the fuel particle distribution form in the IMDP matrix and fuel particle shape had no effect on the effective thermal conductivity of IMDP;Matrix thermal conductivity had more influence on effective thermal conductivity of IMDP compared to kernel;Fuel particle-matrix thermal barrier and OPy layer-SiC layer thermal barrier had more influence on the effective thermal conductivity of IMDP compared with other thermal barrier.The heat transfer performance of IMDP pellet is significantly better than UO2 pellet.
作者 卢志威 刘彤 LU Zhi-wei;LIU Tong(Nuclear Fuel Research and Development Center,Department of ATF R&D,Shenzhen of Guangdong Prov.518026,China)
出处 《核科学与工程》 CAS CSCD 北大核心 2018年第4期710-717,共8页 Nuclear Science and Engineering
基金 国家重大专项资助项目(2015ZX06004-001)
关键词 事故容错燃料 惰性 弥散 芯块 有效热导率 有限元 ATF Inert Dispersion Pellet ETC Finite element
  • 相关文献

参考文献2

二级参考文献11

  • 1LIU Bing LIANG Tongxiang TANG Chunhe.A review of TRISO-coated particle nuclear fuel performance models[J].Rare Metals,2006,25(z1):337-342. 被引量:1
  • 2杨林,刘兵,邵友林,梁彤祥,唐春和.HTR-10球形燃料元件模型分析[J].原子能科学技术,2007,41(z1):326-330. 被引量:3
  • 3马惠,王刚.COMSOL Multiphysics基本操作指南和常见问题解答[M].北京:人民交通出版社,2009.
  • 4SAWA K, SHIOZAWA S, MINATO K, et al. Development of coated particle failure model un- der high burnup irradiation[J].Journal of Nucle- ar Science and Technology, 1996, 33 (9) : 712- 720.
  • 5MARTIN D G. Considerations pertaining to the achievement of high burn-ups in HTR fuel[J]. Nuclear Engineering and Design, 2002, 213(2): 241-258.
  • 6MILLER G K, PETTI D A, VARACALLE D J, Jr, et al. Statistical approach and benchmark ing for modeling of multi-dimensional behavior in TRISO-coated fuel particles[J]. Nuclear Materi- als, 2003(317): 69-82.
  • 7POWERS J J, WIRTH B D. A review of TRISO fuel performance models[J]. Journal of Nuclear Materials, 2010, 405(1) : 74-82.
  • 8GOLUBEV I E, KURBAKOV S D, SCHERNI- KOV A. Experimental and computational study of the pyrocarbon and silicon carbide barriers of HTGR fuel particle[J]. Atomic Energy, 2008, 105(1) : 18-31.
  • 9MILLER G K, WADSWORTH D C. Treating asphericity in fuel particle pressure vessel model- ing[J]. Journal of Nuclear Materials, 1994, 211 (1) : 57-69.
  • 10SNEAD L L, NOZAWA T, KATOH Y, et al. Handbook of SiC properties for fuel performance modeling [J]. Journal of Nuclear Materials, 2007, 371(1-3): 329-377.

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部