期刊文献+

Banach空间具有正规结构的判定条件 被引量:5

Generalized Modulus of Smoothness in Banach Spaces
下载PDF
导出
摘要 为了研究Banach空间的几何常数,依据凸性模和光滑模的定义和性质,采用将光滑模推广到广义光滑模的方法来研究新常数。依据Lindenstrauss公式以及凸性模与光滑模的对偶关系,进一步研究广义光滑模与广义凸性模的的关系,不再局限于光滑模定义的条件,对新常数中的变量研究能够得出Banach空间具有的性质,从而给出了广义光滑模与广义凸性特征的一个关系,再通过广义光滑模与弱正交系数的关系,运用范数三角不等式,得出了Banach空间具有正规结构的充分条件。 In order to study the geometric constants of Banach space,a new method is extended to study new constants by means of extending the modulus of smoothness to the generalized smooth mode.On the basis of the Lindenstrauss formula and the duality between the modulus of convexity and modulus of smoothness,further study of generalized modulus of smoothness and generalized modulus of convexity and modulus of smoothness is no longer confined to the defined conditions,properties of the variables can be obtained in constant research of new space with Banach,which gives a relation between the generalized modulus of smoothness and generalized convex the characteristics.Through the relationship between generalized modulus of smoothness and weak orthogonal coefficients,by means of the norm of the triangle inequality,sufficient conditions are obtained for normal structure in Banach space.
作者 赵亮 王微微 张兴 ZHAO Liang;WANG Wei-wei;ZHANG Xing(School of Applied Sciences,Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2018年第4期140-144,共5页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11571085) 黑龙江省教育厅科学技术研究项目(12541145)
关键词 一致光滑 广义光滑模 Lindenstrauss公式 正规结构 uniform smoothness generalized modulus of smoothness lindenstrauss formula normal structure
  • 相关文献

参考文献9

二级参考文献64

  • 1GAO J. Normal Structure and Modulus of U-convexity in Banach space[ C ]//Function Spaces, Differential Operators and Nonlinear Analysis, New York, 1996 : 195 - 199.
  • 2GAO J. The W * -convexity and Normal Structure in Banach Spaces [ J]. Appl. Math. Lett., 2004,17 : 1381 - 1386.
  • 3GAO J. On Some Geometric Parameters in Banach spaces [ J ],J. Math. Anal. Appl. ,2007,1:114 - 122.
  • 4GAO J. A Pythagorean Approach in banach Space[J]. J. Inequal. Appl., (2006), Article ID 94982.
  • 5GOEBEL K, DIRK W A. Topices in Metric Fixed Point Theory [ M]. Cambridge:Cambridge Univ. Press, 1990.
  • 6JIMEBEL-MELADO A, LLORENS-FUSTER E,SAEJUNG S. The Von Neuman-jordan Constant, Weak Orthogonality and Normal Structure in Banach Spaces [ J ]. Rroc. Amer. Math. Soc. , 2006, 134(2) :355 -364.
  • 7DATO M, MALIGEANDA L, TAKAHASHI Y. On James and Jordan-yon Neumann Costants and The Normal Structure Coefficient of Banach Space[ J]. Studia Math. ,2001,144:275 - 295.
  • 8KIRK W A. A Fixed Point Theorem for Mappings which Do not Increase distances [ J ]. Amer. Math. Monthly, 1965, 72:1004 - 1006.
  • 9MAZCUAN-NAVARRO E M. Banach Spaces Properties Sufficient for Normal Structure [ J ]. J. Math. Anal. Appl. , 2008,337 : 197 -218.
  • 10SAEJUNG S. On the Modulus of U-convexity[ J]. Abstract and Applied Analysis, 2005,1 : 59 - 66.

共引文献29

同被引文献22

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部