期刊文献+

CCN中一种非混合式蚁群路由优化策略 被引量:2

A non-hybrid ant colony routing strategy for content centric network
下载PDF
导出
摘要 蚁群优化(ant colony optimization,ACO)近年来在信息中心网络(content centric networking,CCN)路由领域的应用逐渐增多,其中,将ACO与其他机制相混合以改善路由性能的策略得到较多研究,但基于蚁群优化的混合式算法通常存在可扩展性低下,动态性差,网络成本高等问题。为此提出一种高效的非混合式蚁群路由算法(irritant ant framework,IAF)。添加一个新维度—一种动态的、仿生物的信息素分层,将传统单级别信息素上升为多级别信息素,增强蚁群对于路径的探索程度,抑制算法过早收敛;并且考虑了节点状态的动态性,实时改变信息素等级以选择最佳转发路径;此外,首次考虑了节点缓存特性对信息素更新策略的影响,构造出全新的信息素更新公式,减小算法的收敛时间。实验结果表明,该算法能够有效地降低内容请求时延,提升缓存命中率,以较低的开销获得良好的CCN路由性能。 The application of ant colony optimization(ACO)in the field of content centric networking(CCN)routing has been increasing.The strategy which mixes ACO with other mechanisms to improve the routing performance has received more research.However,the hybrid algorithm based on ACO has been showing low scalability,poor dynamism and high investment cost.In this paper we present an efficient non-hybrid ant colony routing strategy(IAF,irritant ant framework)to address these problems.It adds a new dimension-a dynamic,biologically-inspired pheromone stratification,rising from the traditional single level pheromone to multiple level pheromones,which fully explores the path information and suppresses premature convergence of the algorithm;and it considers the dynamics of the node state and changes the pheromone level in real time to select the optimal forwarding path.In addition,it also considers for the first time the influence of characteristics of node cache on the pheromone update strategy and constructs a new pheromone updating formula to reduce the convergence time.The simulation results show that the scheme is able to decrease the request latency,increase the cache hit ratio,while improving the overall performance of content delivery with a low amount of additional overhead.
作者 刘期烈 诸葛丽强 夏远鹏 秦庆伟 邢峰英 LIU Qilie;ZHUGE Liqiang;XIA Yuanpeng;QIN Qingwei;XING Fengying(Chongqing Key Lab of Mobile Communications Technology,Chongqing University of Posts and Communications,Chongqing 400065,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2018年第4期445-452,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 重庆市基础研究重点项目(cstc2015jcyj BX0068) 重庆重点产业共性关键技术创新专项(cstc2017zdcy-zdyf0607)~~
关键词 信息中心网络(CCN) 蚁群优化 非混合 信息素级别 缓存特性 content centric networking(CCN) ant colony optimization(ACO) non-hybrid pheromone level cache characteristics
  • 相关文献

参考文献3

二级参考文献16

  • 1蔡青松,李子木,胡建平.Internet上的流媒体特性及用户访问行为研究[J].北京航空航天大学学报,2005,31(1):25-30. 被引量:13
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3蒋峥峥,王汝传,孙力娟.基于移动Agent无线传感器网络节点自定位算法[J].计算机技术与发展,2007,17(6):1-4. 被引量:7
  • 4Chong C Y, Kumar S. Sensor networks : evolution, opportuni- ties and challenges [ J ]. Proceedings of IEEE, 2003,91 ( 8 ) : 247 - 1256.
  • 5Mao G, Fidan B, Anderson B D O. Wireless Sensor Network Localization Techniques [ J ]. Elsevier/ACM Computer Net- works ,2007,51 (10) :2529-2553.
  • 6Tian S,Zhang X M,Liu P X,et al. A RSSI-based DV-hop al- gorithm for wireless sensor networks [ C ]//Proc. of IEEE WICOM2007. [ s. 1. ] : [ s. n. ] ,2007.
  • 7Sayed A H, Tarighat A, Khajehnouri N. Network-based wire- less location:challenges faced in developing techniques for ac- curate wireless location information[J]. IEEE Signal Process- ing Magazine, 2005,22 (4) : 24-40.
  • 8Hofmann-Wellenho B, Lichtenegger H, Collins J. GPS Theory and Practice [ M ]. New York : Spring Wien, 1997.
  • 9Bulusu B, Heidemann J,Estrin D. Density adaptive algorithms for beacon placement in wireless sensor networks [ C ]//IEEE ICDCSDI. Phoenix, AZ : [ s. n. ] ,2001.
  • 10王书聪.无线传感器网络分布式定位算法研究[J].计算机技术与发展,2008,18(11):62-65. 被引量:11

共引文献20

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部