期刊文献+

面向脑MR影像分割与偏置场修正的FCM方法 被引量:2

Fuzzy C-means method for brain magnetic resonance image segmentation and bias field correction
下载PDF
导出
摘要 传统模糊C-均值(fuzzy C-means,FCM)算法以及结合空间信息的改进方法在分割脑磁共振(magnetic resonance,MR)影像时对噪声十分敏感,且无法消除脑MR影像中的偏置场。针对上述问题,提出一种面向脑MR影像分割与偏置场修正的FCM方法。该方法充分利用图像中的空间局部信息和非局部信息,分别构造出多局部信息模糊因子和非局部权重,在提高算法抗噪性的同时,尽可能多地保持图像细节;建立偏置场模型,以去除脑MR影像中的灰度不均匀性;将提出的多局部信息模糊因子和非局部权重嵌入到带有偏置场模型的FCM方法中,以实现噪声和偏置场条件下的脑MR影像分割。实验结果表明,与其他方法相比,所提方法对脑MR影像中的噪声具有更强的抑制能力,且能够有效消除偏置场对脑MR影像分割的影响,具有更优的分割性能。 As traditional fuzzy C-means(FCM)algorithm and its extensions combined with spatial information are quite sensitive to noise and incapable of removing bias field when segmenting brain magnetic resonance(MR)image.A new FCM method is proposed for brain MR image segmentation and bias field correction.To deeply dig out the spatial local and nonlocal information in an image,a novel multiple local information fuzzy factor and non-local weight are respectively presented to enhance noise robustness and preserve more image details.Then the bias field model is constructed to overcome the effect of intensity inhomogeneity.Finally,the new multiple local information fuzzy factor as well as the non-local weight is embedded into FCM framework with bias field model for brain MR image segmentation.Experimental results show that the proposed scheme is more robust to image noise compared with other methods,and it can effectively reduce the impact of bias field on brain MR image segmentation,thus achieving better segmentation performance.
作者 陆海青 葛洪伟 LU Haiqing;GE Hongwei(Ministry of Education Key Laboratory of Advanced Process Control for Light Industry,Jiangnan University,Wuxi 214122,P.R.China;School of Internet of Things,Jiangnan University,Wuxi 214122,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2018年第4期518-529,共12页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 江苏省普通高校研究生科研创新计划项目(KYLX16_0781 KYLX16_0782) 江苏高校优势学科建设工程项目(PAPD)~~
关键词 脑磁共振(MR)影像分割 模糊C-均值 多局部信息模糊因子 非局部权重 偏置场修正 brain magnetic resonance(MR)image segmentation fuzzy C-means multiple local information fuzzy factor non-local weight bias field correction
  • 相关文献

参考文献3

二级参考文献21

  • 1毛韶阳,李肯立.K-means初始聚类中心优化算法研究[J].重庆邮电大学学报(自然科学版),2007,19(4):422-425. 被引量:6
  • 2BUADES Antoni,COLL Bartomeu, MOREL Jean Michel. A non-local algorithm for image denolsing[ J ]. IEEE Com-puter Society Conference on Computer Vision and Pattern Recognition, 2005,2 (2) :60-65.
  • 3BUADES A, COLL B, MOREL J M. A review of image denoising algorithms, with a new one [ J ]. Muhiseale Modeling & Simulation, 2005,4 ( 2 ) : 490-530.
  • 4SINGER A, SHKOLNISKY Y, NADLER B. Diffusion interpretation of non-local neighborhood filters for signal denoising[ J ]. SIAM Journal on Imaging Sciences, 2009, 2(1) :118-139.
  • 5BROX T,KLE Inschmidt O, CREMERS D. Efficient non- local means for denoising of textural patterns [ J ]. IEEE Trans Image Process ,2008,17 ( 7 ) : 1083-1092.
  • 6BROX T, GREMERS D. Iterated non-local means for texture restoration [ C ]//In Proceedings of International Conference on Scale Space and Variational Methods in Computer Vision. NewYork : Springer ,2007 : 13-24.
  • 7DARBON J, CUNHA A, CHANT F, et al. Fast nonlocal filtering applied to electron cryomieroscopy [ C ]//Proc of the 5th IEEE International Symposium on Biomedical Im- aging. ISBI : IEEE Press,2008 : 1331 - 1334.
  • 8PEYRE G. Image processing with nonloeal spectral bases [ J ]. Multiscale Model Simul, 2008,7 (2) :703-730.
  • 9ZENG W L,LU X B. Region-based non-local means algo- rithm for noise removal[ J]. Electronics Letters, 2011,47 (20) : 1125-1127.
  • 10DELEDALLE C A,DENIS L,TUPIN F. herative weighted maximum likelihood denoising with prnbabilistic patch- based weight [ J]. IEEE Trans Image Process, 2009, 18 (2) : 1-12.

共引文献11

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部