摘要
借助于代数度量广义逆方面的扰动结论,同时利用一般的约束极值解问题和无约束极值问题的一个等价转化,该文在自反严格凸Banach空间中获得了具有等式约束的极值解问题的扰动估计.最后,作为主要结论的推论,该文分别考虑了不适定算子方程的极值解、最佳逼近解和点投影到线性流形等问题的扰动分析.
In this paper,with the help of recent perturbation results of the Moore-Penrose metric generalized inverse,also based on an equivalent for mation of the constrained extremal solution problems and the perturbation result for general extremal solution problems,we present some results on the perturbation analysis for extremal solution problems with equality constra in tsinreflexive strictly convex Banach spaces.As a consequence,some particular cases and applications will be also presented.
作者
曹建兵
Cao Jianbing(Department of Mathematics,Henan Institute of Science and Technology,Xinxiang Henan 453003)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2018年第4期649-657,共9页
Acta Mathematica Scientia
基金
中国博士后科学基金(2015M582186)
河南省教育厅高等学校重点科研项目(18A110018)
河南科技学院博士后基金(5201029470209)~~
关键词
代数度量广义逆
约束极值解
扰动
Algebraic metric generalized inverse
Constrained extremal solution
Perturbation