期刊文献+

基于深度学习特征字典的单帧图像超分辨率重建 被引量:4

Single Image Super Resolution Reconstruction Based on Deep Features Dictionary
下载PDF
导出
摘要 在基于字典的单帧图像超分辨率重建算法中,依赖人工浅层特征设计的字典表达图像特征能力有限。为此,提出基于深度学习特征字典的超分辨重建方法。该算法首先利用深度网络进行高、低分辨率训练样本图像深层次特征学习;然后,在稀疏字典超分辨框架下联合训练特征字典;最后,输入单帧低分辨率图像并利用该字典实现超分辨率重建。理论分析表明,引入深度网络提取图像深层次特征并用于字典训练,对低分辨率图像的高频信息补充更加有利。实验证明,与双三次插值以及基于一般人工特征字典的超分辨重建算法相比,本文算法的主观视觉和客观评价指标均高于对比算法。 The ability of image features expression with the dictionary designed by artificial shallow features is limited in dictionary based single image super-resolution reconstruction algorithm.For the reason,an image super resolution reconstruction algorithm based on deep learning and feature dictionary is proposed.Firstly,deep-level feature learning is carried out in high and low resolution training sample images by using deep network.Secondly,the feature dictionary is trained with the combination of sparse coding under the sparse dictionary super resolution frame.Finally,a low resolution image is put in and the super resolution reconstruction is realized by using the dictionary.Theoretical analysis shows that the combination of image deep-level feature extraction and dictionary training by using deep network is more beneficial to high frequency information supplement for low resolution image.Experimental results show that compared with bicubic interpolation and other general artificial feature dictionary based super resolution reconstruction algorithms,the proposed algorithm has better subjective visual and objective evaluation indices.
作者 赵丽玲 孙权森 张泽林 Zhao Liling;Sun Quansen;Zhang Zelin(School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing,210094,China;School of Information and Control,Nanjing University of Information Science&Technology,Nanjing,210044,China)
出处 《数据采集与处理》 CSCD 北大核心 2018年第4期740-750,共11页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61673220 61802199)资助项目
关键词 深度学习 字典学习 超分辨 深层次特征提取 单帧图像 deep learning dictionary learning super-resolution deep-level feature extraction single image
  • 相关文献

参考文献8

二级参考文献292

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2肖泽龙,许建中,彭树生,纪如霆.基于凸集投影算法的被动毫米波图像超分辨率恢复[J].南京理工大学学报,2007,31(3):355-358. 被引量:5
  • 3Park S C,Park M K,Kang M G.Super-resolution image recon struction-A technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 4M Irani,S Peleg.Improving resolution by image registration[J].Graphical Models and Image Processing,1991,53(3):231-239.
  • 5Patti J,Sezan M,Tekalp A M.High-resolution image reconstruction front a low-resolution image sequence in the presence of time-varying motion blur[A].IEEE hit Conf on Image Processing[C].Austin:IEEE Computer Society Press,1994.343-347.
  • 6Tuan Q Pham,Lucas J van Vliet,Klamer Schutte.Robust fusion of irregularly sampled data using adaptive normalized con volution[J].EURASIP Journal on Applied Signal Processing,2006,2006(10):236-247.
  • 7Capel D,Zisserman A.Super-resolution enhancement of text image sequences[A].Proceedings of 15th International Conference on Pattern Recognition[C].Wasbington DC:IEEE Computer Society Press,2000.1600-1605.
  • 8M J Fadili,J L Starck,F Murtagh.Inpainting and zooming using space representations[J].The Cornputer Journal,2009,52(1):64-79.
  • 9J Bobin,J L Starck,J Fadili,et al.Morphological component analysis:an adaptative thresholding strategy[J].IEEE Transactions on Image Processing,2007,1600:675-2681.
  • 10G B Passty.Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[J].J Math Anal Appl,1979,72(7):383-390.

共引文献732

同被引文献31

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部