期刊文献+

一个具有附益性及保序性算子的形态学非局部拓展 被引量:2

A Nonlocal Extension of Morphology with Adjunction and Order-Preservation Operators
下载PDF
导出
摘要 近年,形态学非局部拓展工作在图像处理领域受到众多关注.而附益性算子是经典形态学的最基本形式,也是形态学分析方法最重要的变换工具.为此,一些研究者就形态学非局部拓展中如何保持算子的附益性开展工作.本文从理论及实例两个方面说明,相关拓展工作为保持算子的附益性而丢失了保序性的不足;进一步,通过设计非局部权值的获取过程,并结合现有工作,本文提出了一个新的形态学非局部拓展,并定理证明了所得算子同时具备附益性及保序性两个重要性质;人工合成图像及自然图像上的仿真实验也表明了本文所提算法的有效性. Due to the success in image denoising,the nonlocal strategies have recently been introduced to extend morphology from local to nonlocal.And the operators with adjunction property(adjunction operators for short)are the basic operator form in traditional morphology,which are fundamental in morphological analyzing.However,the adjunction property of operators has usually been missed in the extended works.To overcome the problem,some extensions for nonlocal morphology with adjunctions operators have been provided.Unfortunately,as declared in this paper,another important property,i.e.,order-preservation,has been lost in these extensions.To make up the defect of losing order-preservation,by adapting the nonlocal weights acquisition,a novel nonlocal morphology is proposed in this study.Meanwhile,it has been proved that adjunction and order-preservation properties are both kept in the proposed extension.Finally,the experimental results on synthetic and natural images validate its feasibility and effectiveness.
作者 孙忠贵 高新波 张冬梅 李洁 王颖 SUN Zhong-gui;GAO Xin-bo;ZHANG Dong-mei;LI Jie;WANG Ying(School of Mathematics Science,Liaocheng University,Liaocheng,Shandong 252000,China;School of Electronic Engineering,Xidian University,Xi’an,Shaanxi 710071,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第8期1969-1975,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61432014 No.61671339 No.U1605252) 山东省自然科学基金(No.ZR2014FM032) 聊城大学博士科研基金(No.318051711)
关键词 形态学 非局部 附益性 保序性 腐蚀 膨胀 morphology nonlocal adjunction order-preservation erosion dilation
  • 相关文献

参考文献2

二级参考文献27

  • 1[1]Rioul O. A Discrete-Time Multiresolution Theory[J]. IEEE Transactions on Signal Processing,1993, 41:2591-2606.
  • 2[2]Mallat S A. A Wavelet Tour of Signal Processing[M]. San Diego: Academic Press, 1998.
  • 3[3]Heijmans H J A M. Morphological Image Operators[M]. Boston: Academic Press, 1994.
  • 4[4]Toet A. A Morphological Pyramidal Image Decomposition[J]. Pattern Recognition Letter, 1989, 9:255-261.
  • 5[5]Kong X, Goutsias J. A Study of Pyramidal Techniques for Image Representation and Compression[J]. Journal of Visual Communication and Image Representation,1994,5:190-203.
  • 6[6]Morales A, Acharya R, Ko S J. Morphological Pyramids with Alternating Sequential Filters[J]. IEEE Transactions on Image Processing, 1995,7(4):965-977.
  • 7[7]Heijmans H J A M, Goutsias J. Some Thoughts on Morphological Pyramids and Wavelets[A]. Signal Processing IX: Theories and Applications(Volume I)[C]. Greece, Rhodes: Eusipco,1998.133-136.
  • 8[8]Goutsias J, Heijmans H J A M. Multiresolution Signal Decomposition Schemes. Part 1: Linear and Morphological Pyramids[R]. Amsterdam, the Netherlands:Centrum voor Wiskunde en Informatica, 1998.
  • 9[9]Heijmans H J A M, Goutsias J. Multiresolution Signal Decomposition Schemes. Part 2: Morphological Wavelets[R]. Amsterdam, the Netherlands:Centrum voor Wiskunde en Informatica,1999.
  • 10Aptoula E,Lefèvre S.A comparative study on multivariate mathematical morphology[J].Pattern Recognition,2007,40(11):2914-2929.

共引文献1

同被引文献2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部