摘要
为了克服肺部病变CT表现复杂,极易造成医生误诊的缺点,提出了一种基于相似性度量的医学图像检索算法并用于肺癌的诊断研究,该相似性度量保持了图像的语义相关和视觉相似.首先,根据相似性度量理论构建距离度量学习算法学习一个马氏距离;然后,根据学习的马氏距离度量,提出新的医学图像检索算法,并将提出的算法应用于肺癌的诊断研究.实验结果证明了该检索算法在肺癌诊断应用中的可行性和有效性.
In order to overcome the shortcomings that CT of pulmonary lesions is complex and is very easy to lead to misdiagnosis,a medical image retrieval algorithm based on similarity measurement was proposed to diagnose lung cancer.The similarity measurement maintains the semantic relevance and visual similarity of the image.Firstly,a distance metric learning algorithm was constructed to learn a Mahalanobis distance on the basis of the proposed similarity measurement.Secondly,a novel medical image retrieval algorithm was proposed based on the learned distance metric to diagnose lung cancer.The study results demonstrate the feasibility and effectiveness of the proposed retrieval algorithm in lung cancer diagnosis.
作者
魏国辉
齐守良
钱唯
张魁星
WEI Guo-hui;QI Shou-liang;QIAN Wei;ZHANG Kui-xing(School of Sino-Dutch Biomedical&Information Engineering,Northeastern University,Shenyang 110169,China;School of Science and Engineering,Shandong University of Traditional Chinese Medicine,Jinan 250355,China)
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第9期1226-1231,共6页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(61672146
81671773)
关键词
医学图像检索
肺癌
相似性度量
距离度量学习
纹理特征
medical image retrieval
lung cancer
similarity measurement
distance metric learning
texture features