期刊文献+

猫耳气膜孔冷却性能数值模拟 被引量:3

Numerical study on cooling performance of Nekomimi film holes
下载PDF
导出
摘要 为了研究透平静叶不同位置处猫耳气膜孔的冷却性能,对7种猫耳气膜孔结构在吹风比为0.5、1.0、1.5和2.0时的冷却效率曲线进行分析。结果表明:前向角大小是影响猫耳气膜孔冷却性能的关键参数;随着吹风比的增大,静叶压力面靠近前缘的气膜孔纵向平均冷却效率有降低趋势;提高前向角起始位置会使下游中心线附近冷却效率增大,但纵向平均气膜冷却效率较低。 To investigate the cooling performance of Nekomimi film hole at different positions of turbine stator vane,film cooling efficiency curves of seven kinds of Nekomimi film hole structures at the blowing ratios of 0.5,1.0,1.5 and 2.0 are analyzed.The results show that the forward angle is the key parameter affecting the cooling performance of Nekomimi film hole.With the increasing of the blowing ratio,the longitudinal average cooling efficiency of the film hole near the leading edge of the stator vane pressure surface has a decreasing tendency.Besides,raising the starting position of the forward angle can increase the cooling efficiency near the downstream centerline but decrease the longitudinal average film cooling efficiency.
作者 于飞龙 肖俊峰 高松 李园园 段静瑶 蔡柳溪 上官博 YU Feilong;XIAO Junfeng;GAO Song;LI Yuanyuan;DUAN Jingyao;CAI Liuxi;SHANGGUAN Bo(Xi’an Thermal Power Research Institute Co.,Ltd.,Xi’an 710054,China)
出处 《热力发电》 CAS 北大核心 2018年第9期48-55,共8页 Thermal Power Generation
基金 国家自然科学基金项目(51405384) 中国华能集团有限公司总部科技项目(HNKJ16-H09)~~
关键词 透平 静叶 猫耳 气膜孔 气膜冷却 吹风比 纵向平均 冷却效率 turbine stator vane Nekomimi film hole film cooling blowing ratio longitudinal average cooling efficiency
  • 相关文献

参考文献5

二级参考文献47

  • 1何立明,蒋永健,康强,朱艳.利用上游斜坡改善气膜冷却效率的数值研究[J].推进技术,2009,30(1):9-13. 被引量:9
  • 2李广超,柏树生,吴冬,张魏.气膜孔形状对涡轮叶片气膜冷却影响的研究进展[J].热能动力工程,2010,25(6):581-585. 被引量:11
  • 3WALTERS D K,LEYLEK J H. A detailed analysis of film cooling physics, Part I, streamwise injection with cylindrical holes[J]. ASME Journal of Turbomachery, 2000,122 : 103-112.
  • 4HYAMS D G, LEYLEK J H. A detailed analysis of film cooling physics,Part Ⅲ: streamwise injection with shaped holes[J]. ASME Journal of Turbomachery, 2000,122 : 122- 132.
  • 5BRITTINGHAM K A,LEYLEK J H. A detailed anal- ysis of film cooling physics, Part IV: compound-angle injection with shaped holes[J-]. ASME Journal of Tur- bomachery,2000,122 : 133-145.
  • 6NA S, TIP S. Increasing adiabatic film-cooling effec- tiveness by using an upstream ramp[J]. ASME Journal of Heat Transfer, 2007,129 : 464-471.
  • 7KUSTERER K, BOHN D, SUGIMOTO T, et al. Influ- ence of blowing ratio on the double-jet ejection of cool- ing air [C]//ASME Turbo Expo 2007: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2007 : 305-315.
  • 8Heidmann J D, Ekkad S. A novel anti-vortex turbine film cooling hole concept [C]//ASME Turbo Expo 2007:Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2007 : 487-496.
  • 9YUEN C H N, MARTINEZ-BOTAS R F. Film cooling characteristics of a single round hole at various stream- wise angles in a crossflow: Part I effectiveness[J]. In- ternational Journal of Heat & Mass Transfer,2003,46 (2) :221-235.
  • 10LIU J, MALAK M, TAPIA L, et al. Enhanced Film Cooling Effec- tiveness with New Shaped Holes [ C ]//ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK : ASME ,2010.

共引文献19

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部