摘要
从重力场的基本原理出发,结合重力场、总场梯度以及重力场梯度张量的基本原理,推导得到直立长方体这种典型三度体模型的重力梯度张量解析表达式,并从位场叠加的原理出发,将单个长方体剖分为两个长方体,用推导出来的多个长方体重力梯度张量的叠加公式计算剖分后模型的梯度张量各分量,并与单个长方体理论场值进行比较,证明位场叠加理论在模型正演中的适用性.
Analytical expression of gravity gradient tensor of the cuboid was derived based on the principle of the gravity field and the gravity gradient tensor.Multiple cube gravity gradient tensor formula also be derived.Based on the theory of finite element,cutting a single cube into two cubes,the gravity gradient tensor of the model that is divided with the formula that is proved is calculated.And comparing with single rectangle theory field value,the applicability of the theory of finite element in modeling is feasible.
作者
常文凯
汪仕伟
刘定国
杨荣芳
蒋甫玉
CHANG Wenkai;WANG Shiwei;LIU Dingguo;YANG Rongfang;JIANG Fuyu(Guizhou Survey and Research Institute for Water Resources and Hydropower,Guiyang 550000,China;Hohai University,Nanjing 210000,China)
出处
《河南科学》
2018年第8期1182-1187,共6页
Henan Science
基金
国家自然科学基金(41504081)
江苏省自然科学基金(BK20140844)
关键词
重力场
重力梯度张量
直立长方体
剖分
gravitational field
gravity gradient tensor
upright cuboid
division