期刊文献+

基于神经网络算法的助听器帮助聋人恢复听力

Hearing Aid Helps Deaf People Recover Hearing Based on Neural Network Algorithm
下载PDF
导出
摘要 对于听力受损严重的耳聋患者,一般助听器对其没有多少用处,而且这种助听器放大后引起会听者不舒服或感觉声音模糊;利用人工神经网络算法(Artificial Neural Network,即ANN),在对助听器的激励信号处理方面的应用,形成这种新型的助听器,可给听力受到严重损伤的聋人带来一定的听力。 For the deaf patients with severe hearing loss,the general hearing aids is not very useful to the hearing aids,and the hearing aids is amplified to cause the listener to be uncomfortable or the sound is blurred;the application of the artificial neural network algorithm(Artificial Neural Network,that is,ANN),to the application of the incentive signal processing of the hearing aids,forms this A new type of hearing aid can bring hearing loss to deaf people with severe hearing loss
作者 崔建国 宁永香 Cui-jianguo;ning-yongxiang(Shanxi engineering and Technology College,Yangquan 045000,ShanXi,China)
出处 《电子世界》 2018年第17期44-45,共2页 Electronics World
关键词 人工神经网络 基波频率 多层感知机 DSP S型函数 权重 Artificial neural network fundamental frequency multilayer perceptron DSP S type function weight
  • 相关文献

参考文献4

二级参考文献38

  • 1刘媛,方景林,邴志刚.电磁力平衡传感器温度补偿的解决方案[J].仪器仪表学报,2003,24(z1):65-68. 被引量:8
  • 2张永怀,刘君华.采用BP神经网络及其改进算法改善传感器特性[J].传感技术学报,2002,15(3):185-188. 被引量:54
  • 3[1]RICHARD H, GEORGE L, AUTHUR M, et al. The architecture of a network level intrusion detection system [R].New Mexico:New Mexico Department of Computer Science,1990.
  • 4[2]BALASUBRAMANIYAN J S, GARCIA F J O, ISACOFF D,et al. An architecture for intrusion detection using autonomous agents [R].Indiana:Department of Computer Science, Purdue University, 1998.
  • 5[3]DENNING D E. An intrusion detection model [J]. IEEE Transactions on Software Engineering, 1987, 139(2): 222-232.
  • 6[4]YE N, EMRAN S M, CHEN Q,et al. Multivariate statistical analysis of audit trails for host-based intrusion detection [J]. IEEE Transactions on Computers, 2002, 51(7): 810-820.
  • 7[5]JOU Y F, GONG F, SARGOR C,et al. Design and implementation of a scalable intrusion detection system for the protection of network infrastructure [C].Oakland CA:IEEE Computer Society Press,2000
  • 8[6]LANE T, CARLA E B. An empirical study of two approaches to sequence learning for anomaly detection [J]. Machine Learning, 2003, 51(1): 73-107.
  • 9[7]BONIFACIO J M, CANSIAN A M, CARVALHO A C,et al.Neural networks applied in intrusion detection systems [C].Oakland CA:IEEE Computer Society Press,1998.
  • 10[8]ROBERT H N. Replicator neural networks for universal optimal source coding [J]. Science, 1995, 269(9):1 860-1 863.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部