期刊文献+

采用放松支配关系的高维多目标微分进化算法 被引量:1

Differential evolution algorithm for many-objective using relaxed dominance relation
下载PDF
导出
摘要 为了提高进化算法在求解高维多目标优化问题时的收敛性和多样性,提出了采用放松支配关系的高维多目标微分进化算法。该算法采用放松的Pareto支配关系,以增加个体的选择压力;采用群体和外部存储器协同进化的方案,并通过混合微分变异算子,生成子代群体;采用基于指标的方法计算个体的适应度并对群体进行更新;采用基于Lp范数(0<p<1)距离的多样性维护策略更新外部存储器。为了评估所提算法在高维多目标优化中的求解性能,将它在一组标准测试函数中进行了仿真实验。与其他两种经典算法的比较结果表明,所提算法能够在高维多目标优化问题中产生一组收敛性能和分布性能均较优的非支配解。 In order to improve the convergence and diversity of many-objective evolutionary algorithms,a many-objective differential evolution algorithm using a relaxed dominance relation is proposed.In the proposed algorithm,a relaxed domination relation is designed and incorporated to increase the selection pressure of individuals.Population is coevolved with an external archive,and the child population is generated by the mixed differential mutation operators.The fitness of each individual is evaluated based on an indicator method,and the population is updated.The archive is updated according to the Lp norm(0<p<1)distance based diversity maintenance strategy.In order to validate the effectiveness of the proposed algorithm in many-objective optimization,experiments in a set of state-of-the-art benchmarks are carried out.Compared with two other classical algorithms,the proposed algorithm can generate a set of non-dominated solutions with better convergence and distribution in many-objective optimization problems.
作者 申晓宁 孙毅 薛云勇 SHEN Xiaoning;SUN Yi;XUE Yunyong(School of Information Control,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第18期161-167,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61502239) 江苏省自然科学基金(No.BK20150924)
关键词 高维多目标优化 微分进化算法 放松支配 协同进化 变异 many-objective optimization differential evolution algorithm relaxed dominance co-evolutionary mutation
  • 相关文献

参考文献1

二级参考文献15

  • 1段海滨,张祥银,徐春芳.仿生智能计算[M].科学出版社.2011.
  • 2Schaffer JD.Multiple objective optimization wilh vec- tor evaluated genetic algorithms[J].In Proceeding of the International Conference on Genetic Algorithms and Their AppIications,Hillsdale: L. Erlbaum Asso- ciates, Inc, 1985: 93-100.
  • 3Carlos A. Coello Coello.Evolutionary multi objec- tive optimization: basic concepts and some applica tions in pattern recognition [J].LNCS 6718, 2011: 22-33.
  • 4Vassil Guliashki, Hristo Toshev, Chavdar Korsemov. Survey of evolutionary algorithms used in multiob- jective optimization[J].Problems of Engineering Cy- bernetics and Robotics, Bulgarian Academy of Sci- ences, 2009.
  • 5Fonseca CM,Fleming PJ.Genetie algorithm for mul- tiobjective optimization: formulation, discussion and generation [J].In Proceeding of the 5th International Conference on Genetic Algorithms. San Marco: Morgan Kauffman Publishers ,1993 : 416-423.
  • 6Srinivas N, Deb K.Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolu- tionary Computation,vol. 2,no. 3,pp.221-248,1994.
  • 7Horn J,Nafpliotis N,Goldberg DE.A niched Pareto genetic algorithm for multiobjective optimization[J]. In Proceeding of the 1st IEEE Congress on Evolu- tionary Computation. Piseataway: IEEE, 82 - 87, 1994.
  • 8Erickson M, Mayer A, Horn J.The niched Pareto genetic algorithm 2 applied to the design of ground- water remediation system [J].In proceeding of the 1st Iiniemational Conference on Evolutionary Multi'Criterion Optimization, EMO 2001. Berlin: Springer-Verlag,pp.681-695,2001.
  • 9Zitzler,E,I. Thiele.Multiobjective Evolutionary Al- gorithms: A Comparative Case Study and the Strength Pareto Approach [J].In IEEE Transac- tions on Evolutionary Computation, 1999, 3 (4): 257-271.
  • 10Zitzler E,Laumanns M,Thiele I..SPEA2: Improv- ing the strength Pareto evolutionary algorithm[M]. In Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Prob- lems. Berlin: Springer-Verlag, 2002 : 95-100.

共引文献10

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部