期刊文献+

基于引力模型的朴素贝叶斯分类算法 被引量:1

Naive Bayesian classification algorithm based on gravity model
下载PDF
导出
摘要 针对朴素贝叶斯分类器在分类过程中不同类别的同一特征量之间由于存在相似性,易导致误分类的现象,提出基于引力模型的朴素贝叶斯分类算法。提出以引力公式中距离变量的平方作为相似距离,应用引力模型来刻画特征与其所属类别之间的相似度,从而克服朴素贝叶斯分类算法容易受到条件独立假设的影响而将所有特征同质化的缺点,并能有效地避免噪声干扰,达到修正先验概率、提高分类精度的目的。对遥感图像的分类实验表明,基于引力模型的朴素贝叶斯分类算法易于实现、可操作性强,且具有更高的平均分类准确率。 In order to solve the problem of misclassified in the process of naive Bayesian classifier which caused by the similarity between the same feature quantities of different categories,this paper presented a simple Bayesian classification algorithm based on gravitational model.This algorithm could overcome the influence of the naive Bayesian classification algorithm,which easy to be influenced by effectively avoid noise interference,correct the prior probabilities,and could improved the accuracy of classification purposes.This paper proposed a gravitational model to describe the similarity between the feature and its category by using the square of the distance variable in the gravitational formula as the similar distance.The classification experiments of remote sensing images show that the naive Bayesian classification algorithm based on gravitational model is easy to implement,has high operability and has higher average classification accuracy.
作者 王威 赵思逸 王新 Wang Wei;Zhao Siyi;Wang Xin(School of Computer&Communication Engineering,Changsha University of Science&Technology,Changsha 410114,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第9期2602-2604,共3页 Application Research of Computers
基金 国家重大基础研究项目(613XXX0301)
关键词 分类算法 朴素贝叶斯 引力模型 遥感图像 classification algorithm naive Bayesian gravitational model remote sensing image
  • 相关文献

参考文献5

二级参考文献77

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2程克非,张聪.基于特征加权的朴素贝叶斯分类器[J].计算机仿真,2006,23(10):92-94. 被引量:40
  • 3章舜仲,王树梅,黄河燕,陈肇雄.基于属性相关性分析的贝叶斯分类模型[J].情报学报,2007,26(2):271-274. 被引量:11
  • 41.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 52.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 63.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 74.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 85.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 96.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 107.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61

共引文献265

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部